1.	The range of t distribution is:			
,	/√-∞ <t<∞< td=""><td>2) -1 < t < 1</td></t<∞<>	2) -1 < t < 1		
	3) $0 < t < \infty$	4) $-\infty < t < 0$		
2.	The mean of seven observations is 8 eight observations is:	. A new observation 16 is added. The mean of		
	1) 12	2)9		
	3) 8	4) 24		
3.	For a two tail test when n is large, the value of Z at 0.05 level of significance is:			
	1) 1.645	2) 2.58 4) 1.96		
	3) 2.33	4)1.96		
4.	v ₁ , v ₂ distribution curve becomes hig	thly +ve skew, when:		
	$) v_1 < 5$	$25 \text{ y}_2 < 5$		
	3) any of v_1 , $v_2 < 5$	2) $v_2 < 5$ 4) $v_2 > 5$		
5.	leasures used to study the peakedness of a given distribution are marked as:			
	1) Measures of Kurtosis	2) Measure of skewness		
-	3) Quartiles	4) Mean		
6.	Measures used to study shape of the curve of a given distribution are marked as :			
	1) Raw moments	2) Measures of skewness		
	3) Central moments	4) Quartiles		
7.	For a given data (X1,X	n), the minimum		
	value of $\sum_{i=1}^{n} (X_i - a)^2$ is attained when a is:			
	A. Arithmetic mean			
	B. Median			

Mode

Standard deviation

For a given data $(X_1,$.X _n), the minimum
value of $\sum_{i=1}^{n} X_i - a $ is a	ttained when a is:

ı	A.	Arithmetic mean

9. If 'a' is the actual value and 'e' is the estimated value, the formula for relative error

13	
1)	a/
''	200
34	Ta-cl/e

4)
$$(a-e)/_a$$

10. Frequency of a variable is always -

1) in percentage

2) a fraction

3) an integer

4) mid value

11. Quartile deviation is given by the formula -

A.
$$Q.D = \frac{Q_3 + Q_1}{2}$$

B.
$$Q.D = Q_3 - Q_1$$

B.
$$Q.D = Q_3 \cdot Q_1$$

Q. $D = \frac{Q_3 \cdot Q_1}{2}$
D. $Q.D = \frac{Q_1 \cdot Q_3}{4}$

D.
$$Q.D = \frac{Q_1 - Q_3}{4}$$

12. The degrees of freedom for student t-based on a random sample of size 'n' is :

13. The moment generating function of Bernouli distribution is :

2)
$$(q + Pe^{t})^{-n}$$

4)
$$(q + Pe^{-1})$$

		The second secon
14.	In which distribution the mean and varia	ance are equal?
	Binomial distribution Normal distribution	2) Gamma distribution A) Poisson distribution
15.	If $X \sim b(n,p)$, the distribution of $y=n-x$ is	:
	1) b(n,1)	2) b(n, x)
	3) b(n, p)	4) b(n, q)
16.	If for a binomial distribution b(n, p), mean = 4, variance = 4/3, then probability. P(X ≥ 5) is equal to A. $\left(\frac{2}{3}\right)^{6}$ B. $\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)$ C. $\left(\frac{1}{3}\right)^{6}$ D. $\left(\frac{2}{10}\right)^{6}$	
17.	If for a binomial distribution, $b(n,p)$, $n = P$ is:	4 and also $P(x=2) = 3 P(x=3)$, the value of
	1) %1	2) 1
	37/2	4) 1/3
18.	The mean and variance of binomial distribution are 8 and 4 respectively. Then $P(X=1)$ is equal to - B. $\frac{1}{2^{12}}$ C. $\frac{1}{2^6}$ D. $\frac{1}{2^8}$	
	TO CALLES STATE OF ST	ito veriance
19.	The mean of the binomial distribution is It greater than	its variance. 2) less than
-	3) equal to	4) square of
	-/ - T	

• _

20.	The relation between the mean and the	variance of χ^2 with n.d.1 is:		
	1) Mean = 2 variance	2) 2 Mean = variance		
	3) Mean = variance	4) 2 mean = 3 variance		
21.	If X_1, X_2,X_n are i.i.d N (μ, σ^2) , the variab	le		
	\bar{x} is distributed as			
	A. $N(\mu, \sigma/\sqrt{n})$			
	B. $N(\frac{\mu}{n}, \sigma)$			
	C. $N(\mu, \sigma/n)$			
	D. $N\left(\frac{\mu}{\sqrt{n}}, \frac{\sigma}{\sqrt{n}}\right)$			
22.	The normal distribution curve is :			
	I) Unimodal	2) Not skewed		
	3) Mesokurtic	4) All of these		
23.	If X_1 and X_2 are two independent Poisson variates with parameters λ_1 and λ_2 respectively, the variable $(X_1 + X_2)$ follows :			
	1) Binomial distribution with parameters $(\lambda_1 + \lambda_2)$	2) Poisson distribution with parameters $(\lambda_1 + \lambda_2)$		
	3) Either (A) or (B)	4) Neither (A) nor (B)		
24.	If n, the sample size is larger than 30 an tends to:	d tends to ∞ , the student's t distribution		
	1) Normal distribution	2) F-distribution		
	3) Binomial distribution	4) Chi-square distribution		
25.	t - distribution is used to:			
/	West the difference between two means	2) test the difference between two variance		
	3) test the goodness of fit	4) test the independence of attributes		
26.	X is a binomial variate with parameter reduces to :	n and p . If $n = 1$, the distribution of X		
	1) Poisson distribution	2) Binomial distribution		
/	3) Bernoulli distribution	4) Discrete probability distribution		

27.	. Let X be a Poisson variate with parameter λ . If $P(X=2) = 9P(X=4) + 90P(X=6)$, then λ must be equal to :		
	1) 5	2) 1 4) 2	
	3) 1.5	4) 2	
28.	The three distributions t, F, χ^2 are called	:	
_	Discrete probability distributions Continuous probability distributions	2) Normal distributions4) Sampling distributions	
29.	Mean and variance of a Chi-square varia	ate with n degrees of freedom are :	
/	1) n, 2n 3) n, √2n	2) 2n, n 4) n, √n	
30.	The test used for testing the independence	ee of attributes is :	
	l) t - test	2) F - test	
	3) x² test	4) Z test	
31.	Which of the following tests is based on t	he area property of Normal Probability	
	Curve?		
	1) t - tests	2) F - tests	
	$3/\chi^2$ - tests	4) Asymptotic tests	
32.	The abbreviation i.i.d stands for :		
-	WIndependent and Identically Distributed	Identically and Independently Distributed	
	3) Both (A) and (B)	4) None of these	
33.	The range of Chi square distribution is:		
	X) 0 to ∞	2) 0 to 1	
**	3) -∞ to ∞	-1 to 1	
34.	Binomial distribution tends to Poisson di	stribution when :	
	$+)$ $n \rightarrow \infty$, $p \rightarrow 0$ and $np = \lambda$ (finite)	2) $n \rightarrow \infty$, $p \rightarrow 1/2$ and $np = \lambda$ (finite)	
	3) $n\rightarrow 0$, $p\rightarrow 0$ and $np\rightarrow 0$	4) $n\rightarrow 15$, $p\rightarrow 0$ and $np\rightarrow 0$	
35.	If X_1 and X_2 are two independent χ^2 variation?	ates, which of the following has also χ^2	
	1) $X_1 (X_1 + X_2)$	2) X ₁ +X ₂	
	3) X ₁ X ₂	4) X ₂ X ₁	

	1) Independence of attributes	2) Equality of several population correlation co-efficients	
	3) Equality of several population variances	A) All the above	
37.	The mean and variance of Binomial distr	ibutions are :	
	1) np and nq	2) np and npq 4) n and nq	
	3) n and np	4) n and nq	
38.	38. If $X \sim N$ (μ , σ^2), the points of inflexion of normal distribution curve are :		
	l) ± μ	2) $\mu \pm \sigma$ 4) $\pm \sigma$	
	3) $\sigma \pm \mu$	$4) \pm \sigma$	
39.	An approximate relation between quartil normal distribution is:	e deviation and standard deviation of	
	1) $5 QD = 4 SD$	2) 4 OD = 5 SD	
	3) 2 QD = 3 SD	2) 4 QD = 5 SD A) 3 QD = 2 SD	
40.	O. The approximate relation between mean deviation and standard deviation of normal distribution is:		
	1) 5 MD = 4 SD	2) $4 MD = 5 SD$	
	3) 3 MD = 3 SD	4) $3 MD = 2 SD$	
41.	1. Pearson's Constants for a normal distribution with mean μ and variance σ^2 are :		
	1) $\beta_1 = 3$, $\beta_2 = 0$, $\gamma_1 = 0$, $\gamma_2 = -3$	$2\gamma \beta_1 = 0, \ \beta_2 = 3, \ \gamma_1 = 0, \ \gamma_2 = 0$	
	3) $\beta_1 = 0$, $\beta_2 = 0$, $\gamma_1 = 0$, $\gamma_2 = 3$	4) $\beta_1 = 0$, $\beta_2 = 3$, $\gamma_1 = 0$, $\gamma_2 = 3$	
42.	The area under the standard normal curves 1.96σ is :	we beyond the ordinates at the points $Z = \pm$	
	1) 95%	2) 90%	
	275%	4) 10%	
43.	In usual notations, the Moment Generati	ng Function of Binomial distribution is:	
	1) (Pe ^t) ⁿ	$(q + Pe^{t})^{n}$ 4) $(q + P)e^{t}$	
	3) (q - Pe ^t) ⁿ	$4) (q + P)e^{t}$	

36. Chi-square distribution is useful to test the:

44. If the probability is $\frac{2}{3}$ that an applicant for a driver's license will pass the road test on any given try, what is the probability that an applicant will finally pass the test on the third try?

45. If X and Y are two independent random variables following geometric distribution with same parameter, what is the distribution of X + Y?

- 1) Geometric distribution

- 3) Binomial distribution
- 2) Negative binomial distribution4) X + Y is not having a distribution

46. Identify a distribution which can have its mean less than variance.

1) Poisson distribution

2) Cauchy distribution

- 3) Binomial distribution
- 4) Negative binomial distribution
- The probability mass function for a binomial distribution with usual notation is: A. C.

48.	If X~N (8,64) the Standard Normal			
	deviate Z will be -			
	A.	$z = \frac{X - 64}{8}$		
	B.	$z = \frac{X - 8}{64}$		
/	e.	$z = \frac{X - 8}{8}$		
	D.	$z = \frac{8 - X}{8}$		

49.	If X ~ N(5,1) the probability density		
	function for the normal variate is:		
	A.	$\frac{1}{5\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mathbf{i}}{5}\right)^2}$	
	B.	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-1}{5}\right)^2}$	
	C.	$\frac{1}{5\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$	
/	Ð.	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\alpha \cdot \mathbf{q}^2}$	

50. For a normal frequency, the odd order moment μ_{2r+1} are equal to :

1)	9)ne
2	7	erc

The m.g.f of the normal distribution
$$N(\mu, \sigma^2)$$
 is _____.

A. $\mu t - \frac{1}{2}\sigma^2 t^2$

B. $\mu t + \frac{1}{2}\sigma^2 t^2$

C. $e^{\mu t + \sigma^{2/2}}$

D. $e^{\mu t + t^{2/2}}$

52. If $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$, the variable X + Y is distributed as _____.

1) N (
$$\mu_1 + \mu_2$$
, $\sigma_1^2 + \sigma_2^2$)

2) N (
$$\mu$$
, $\sigma_1^2 + \sigma_2^2$)

3) N (
$$\mu_1 + \mu_2, \sigma^2$$
)

4)
$$N(\mu, \sigma^2)$$

53. The mean of the Chi-square distribution is _____ of its variance.

2) one-third

4) one fifth

54. The mean of the Chi-square distribution with n.d.f is _____.

$$1) n + 1$$

55.	population $N(\mu, \sigma^2)$, the distribution of			
		$\frac{(Xi - \overline{X})^2}{\sigma^2} \text{ is } \underline{\hspace{1cm}}.$		
	A.	Chi-square with n degrees of freedon	1	
	B.	Chi-square with (n-1) degrees of freedom		
	C.	Chi-square with (n+1) degrees of freedom		
	D.	Chi-square with (n-1) (n-2) degrees of freedom	f	
56.	Equ	ality of two population means can be	tested by	
	1) F	test	2) χ^2 test	
/	3) t test 4) None of the above			
57.	Inde	ependence of two attributes can be te	ted by	
$17\chi^2$ test 2) F test				
	3) Z	test	4) t test	
58.	58. Parameters are those constants which occur in :			
	1) S	amples	2) Probability Density Function	
	3) A	formula	4) None of the above	
59.		value of Statistics-t to test a hypothe ple size 10 having its mean = 18.5 and	ical value 20 of population mean from a l variance = 1.21 is :	

2) -11.6 4) -4.31

1) -3.71 3) 3.71 60. The probability density function of the sum of squares of independent n normal variates N(0, 1) is

A. $\frac{1}{z^{n}} \frac{e^{-z^{n}h} (z^{2})^{n-1}}{2}$ B. $\frac{1}{z^{n/2}} \frac{e^{-z^{n}h} (z^{2})^{\frac{n-1}{2}}}{2}$

If Z_1, Z_2, \ldots, Z_n and n i.i.d Variates the distribution of $\sum_{i=1}^{n} z_i^2$ is:

A. Student t

B. X^2 with n d.f

C. X^2 with (n-1) d.f

D. All the above

62. Chi-square distribution curve in respect of symmetry is :

1) negatively skew

2) symmetrical

3) postively skew

4) All the above

63.

	Moment generating function of the Chi- square distribution is:		
A.	$(1-2it)^{n/2}$		
B.	$(1-2t)^{n/2}$		
	$(1-2it)^{-n/2}$		
D.	$(1-2t)^{-n/2}$		

64. Mode of Chi-square distribution with n.d.f lies at the point :

1)
$$\chi^2 = m-1$$

2)
$$\chi^2 = n$$

$$3) \chi^2 = n-2$$

4)
$$\chi^2 = 1/(n-2)$$

If $X \sim \chi^2 n_1$ and $Y \sim \chi^2 n_2$ the distribution (X - Y) is:

A	$\beta(\frac{n_1}{n_1},\frac{n_2}{n_2})$
A.	$\left(\frac{P_1(\overline{2},\overline{2})}{2}\right)$

- $\beta_2(\frac{n_1}{2},\frac{n_2}{2})$
- χ^2 with $(n_1 n_2) d.f$
- All the above
- 66. If $X_i \sim \chi^2 n_i$ for i=1,2,...n, the distribution of ΣX_i is:
 - 1) Normal distribution

- 2) Chi-distribution
- 3) χ^2 distribution with Σn_i d.f
- 4) None of the above
- 67. Chi-square distribution is used for the test of:
 - 1) Goodness of fit

2) Hypothetical value of population variances

3) Both (A) and (B)

- 4) Neither (A) nor (B)
- 68. When d.f K1 and K2 are large, the Z-distribution tends to:
 - 7) Normal distribution 3) χ^2 distribution

2) F-distribution

- 4) None of the above
- 69. Fisher's Z is closely related to:
 - 1) Helmert x2

2) Snedecor's F

3) Fisher's t

- 4) All of these
- 70. F-distribution was invented by:
 - 1) R.A. Fisher

2) G.W.Snedecor's F

3) Fisher's t

4) All of these

- 71. The range of F-variate is:
 - 1) -∞ to ∞ 3) 0 to ∞

- 2) 0 to 1
- 4) $-\infty$ to 0
- 72. The mgf of the Normal distribution about origin is given by $M_{\star}(t) = e^{\mu_{\star} t^{*} \sigma^{*} t^{*}}$ The mgf of standard normal variate is given by

A.	e^{μ}
B.	$e^{\mu t+t^2}$
e.	$e^{t^2/2}$
D.	$e^{\mu t + \sigma^2}$

73. If the recurrence relation for the moments of the Poisson distribution is

 $\mu_{+1} = r\lambda\mu_{-1} + \lambda\frac{d\mu_r}{d\lambda}$ then the value of μ_4 is

given by

A.	$3\lambda^2 + \lambda$
B.	$3\lambda + \frac{1}{\lambda^2}$
C.	$3\lambda + \lambda^2$
D.	$3(\lambda^2 + \lambda)$

- 74. Suppose that a manufactured product has 2 defects per unit of product inspected, the probability of finding a product with 3 defects is:
 - 1) 0.27

2) 0.18

3) 0.30

4) 0.05

- 75. If the mgf of the Binomial distribution is $(q + pe^t)^n$, then the third moment about mean μ_3 of the binomial distribution is:
 - 1) npq(q p)²

2) $n^2p^2q^2(q - p)$

3) npq (q - p)

4) npq (p - q)

In a Binomial distribution, the sum and
the product of the mean and the variance
are 25/3 and 50/3 respectively. The
Binomial distribution is given by:

A.	$\left(\frac{2}{3} + \right)$	$\left(\frac{1}{3}\right)^{15}$

B.
$$\left(\frac{3}{2} + \frac{1}{2}\right)^{12}$$

C.
$$\left(\frac{2}{3} + \frac{1}{3}\right)^2$$

D.
$$\left(\frac{2}{3} + \frac{1}{3}\right)^2$$

If X₁ and X₂ are two independent X² variates with n1 and n2 d.f respectively then $\frac{X_1}{X_2}$ is:

A.	$\beta_2 \left(\frac{n}{2}\right)$	$\frac{1}{2}$ $\frac{n_2}{2}$	Va	riate

B.
$$\beta_1\left(\frac{n_1}{2},\frac{n_2}{2}\right)$$
 Variate

78.

The fourth central moment of the t distribution μ_4 is given by?

A.
$$\frac{3n}{(n-2)(n-4)}$$

B.
$$\frac{3n^2}{(n-2)(n-4)}$$

$$C. \frac{n^2}{(n-2)(n-4)}$$

D.
$$\frac{3n}{(n-2)^2}$$

79. The ratio of two independent Gamma variates is:

- 1) Gamma variate
- 3) Beta of second kind

- 2) Beta of first kind
- 4) Chi square variate

Mo	ment generating function of F-		
	stribution is		
A.	$\left(1 + \frac{V_1}{V_2} e^{iF}\right)^{V_1 - 1}$		
В.	$\left(1 + \frac{V_2}{V_1} Fe^t\right)^{\frac{V_+ V}{2} - 1}$		
C.	$\left(1 + \frac{V_2}{V_1}e^{\iota F}\right)^{\frac{V}{V}-1}$		
B.	Does not exist		

81. Degrees of freedom for statistic - χ^2 in case of (2 x 2) contingency table is :

- 1)3
- 3) 2

82. If r = 0, the lines of regression:

1) coincide

- 2) parallel
- 3) perpendicular to each other
- 4) r > 1

83. If the d.f n is large, the Chi-square distribution tends to:

- 1) Log normal distribution
- 2) Normal distribution
 4) Polyas distribution
- 3) Multinomial distribution

84. Student t-distribution curve as regards its peak is always:

1) Lepokurtic

2) Mesokurtic

3) Platykurtic

4) A parabola

85. If $X \sim N(12.5, 3.5^2)$ and $Y \sim N(8.5, 2.5^2)$, the variate X + Y is distributed as:

1) N(12.5, 6.0)

2) N(21.0, 18.5)

3) N(12.5, 5.0)

4) N(21.0, 6.0)

86. When d.f k1 and k2 are large, the Z-distribution tends to:

Normal distribution 3) χ^2 distribution

2) F-distribution

4) t - distribution

87. If X_1 and X_2 are i.i.d N(0,1), write the distribution of $X_1 - X_2$.

1) N(0, 1)

3) N(0, 3)

	The normal probability curve is:	
	A) Bell shaped 3) S Shaped	2) J shaped
	3) S Shaped	4) Cone shaped
89.	When d.f for χ^2 are 100 or more, Chi-squ	are is approximated to :
	1) t - distribution	2) F - distribution
	3/Z - distribution	4) Gamma distribution
-		,
90.	The Binomial distribution for which mea $(0.5 + 0.5)^{16}$	In 18 4 and variance is 3 is: $2\times (0.75 \pm 0.25)^{16}$
	$3)(4+3)^{16}$	2) $(0.75 + 0.25)^{16}$ 4) $(0.4 + 0.6)^{20}$
	3) (4 + 3)	4) (0.4 + 0.0)
91.	In Normal distribution:	
/	Y Skewness $\beta_1 = 0$ and Kurtsis $\beta_2 = 3$	2) Skewness $\beta_1 = 3$ and Kurtsis $\beta_2 = 0$
	3) Skewness $\beta_1 = 0$ and Kurtsis $\beta_2 = 0$	4) Skewness $\beta_1 = 3$ and Kurtsis $\beta_2 = 3$
92.	For normal distribution, the Quartile De	
	1) (1/3)σ	2) (⁴ / ₅)σ
	3) (² / ₃)σ	4) σ
93.	In a Binomial distribution, mean 6 and s	tandard deviation $\sqrt{2}$ then the value of p is
	:	•
	:	2
	: 1) ¹ / ₃	2
	:	25 ² / ₃ 4) 0
	: 1) ¹ / ₃	2) ² / ₃ 4) 0
	: 1) ¹ / ₃ 3) 1 The appropriate distribution for describe	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution
	: 1) ¹ / ₃ 3) 1 The appropriate distribution for describe	2) ² / ₃ 4) 0 ing the rare event is:
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented.	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by:
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0,0)	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1)
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0, 0) 2) N(0, 1)	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by:
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0,0) 2) N(0,1) In normal distribution,	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0)
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0, 0) 2) N(0, 1) In normal distribution, 1) Mean > Median > Mode	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode
94.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0,0) 2) N(0,1) In normal distribution,	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0)
94. 95. 96.	1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0, 0) 3) N(0, 1) In normal distribution, 1) Mean > Median > Mode 3) Mean = Median = Mode	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode
94. 95. 96.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0, 0) 2) N(0, 1) In normal distribution, 1) Mean > Median > Mode	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode
94. 95. 96.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represented by N(0, 0) 2) N(0, 1) In normal distribution, 1) Mean > Median > Mode 2) Mean = Median = Mode The Chi-square distribution is:	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode 4) H.M = G.M = A.M
94. 95. 96.	1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is representable of the standard normal distribution is representable of the standard normal distribution, 1) N(0, 0) 3) N(0, 1) In normal distribution, 1) Mean > Median > Mode 3) Mean = Median = Mode The Chi-square distribution is: 1) positively skewed 3) symmetrical	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode 4) H.M = G.M = A.M 2) negatively skewed
94. 95. 96.	: 1) 1/3 3) 1 The appropriate distribution for describe 1) Binomial distribution 3) Normal distribution The standard normal distribution is represent 1) N(0, 0) 2) N(0, 1) In normal distribution, 1) Mean > Median > Mode 3) Mean = Median = Mode The Chi-square distribution is: 1) positively skewed	2) ² / ₃ 4) 0 ing the rare event is: 2) Poisson distribution 4) Rectangular distribution resented by: 2) N(1, 1) 4) N(1, 0) 2) Mean < Median < Mode 4) H.M = G.M = A.M 2) negatively skewed

99.

If X and Y are two independent chi-square variates with V_1 and V_2 degrees of freedom respectively, then $W = \frac{X / V_1}{Y / V_2}$ follows.

- A. t distribution
- B. F distribution
- C. Z distribution
- D. χ^2 -distribution

100. If $t \sim t$ -distribution with (n) d.f, then t^2 follows;

- 1) χ^2 distribution with (n-1) d.f
- 2) F-distribution with (1,n) d.f
- 3) t-distribution with n d.f
- 4) None of these

101. The probability generating function of Poisson distribution is:

1) $e^{\lambda} X (S-1)$

2) e^{S(λ-1)}

3) e'(S-1)

4) λ(S-1)

102.

Moment generating function of the χ^2 – distribution is:

- A. $(1-2it)^{\frac{n}{2}}$
- $B. \left(1-2t\right)^{-\eta/2}$
- C. $(1-2it)^{-n/2}$
- $D. \left(1-2t\right)^{\frac{n}{2}}$

103. Given $r_{12} = 0.28$, $r_{23} = 0.49$, $r_{31} = 0.51$, $\sigma_1 = 2.7$, $\sigma_2 = 2.4$, $\sigma_3 = 2.7$ Regression equation of X_3 on X_1 and X_2 is :

1) $0.674 x_1 + 0.8342 x_2$

2) $0.042 x_1 + 0.53 x_2$

3) $0.405x_1 + 0.424 x_2$

4) $0.325 x_1 + 0.314 x_2$

104. The standard error of the estimate of X_1 on X_2 and X_3 is:

$$A. \int_{S_{1,23}} S_{1,23} = \sum (X_i - Y_i)^2 / N$$

$$\mathcal{B}. \quad \mathcal{S}_{(2)} = \sqrt{\frac{\sum (X_i - Y_i)^2}{N - 3}}$$

C.
$$S_{1,23} = \frac{\sum (X_i - Y_i)^2}{N - 3}$$

D.
$$S_{123} = \frac{\sum (X_1 - Y_i)^3}{N - 3}$$

105. If $r_{12} = 0.77$, $r_{13} = 0.72$ and $r_{23} = 0.52$, multiple correlation coefficient $R_{1.23}$ is:

3) 0.245

106. A function of variates for estimating a parameter is called:

1) an estimate

3) a frame

107.

.	Wh	ich of the following statements is true?
1	A.	$P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P(A_{i}) - (n-1)$
	B.	$P\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P(A_{i})$
	C.	$P\left(\bigcap_{i=1}^{n} A_{i}\right) \leq \prod_{j=1}^{n} P(A_{j})$
	D.	$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$

108. Given that the p.d.f of a continuous random variable "X" follows

$$f(x) = \begin{cases} kx(1-x) & for \ 0 < x < 1 \\ 0 & otherwise \end{cases}$$

The value "K" is:

- 2 A.
- B. 4
- <u>د</u> C. اع

109. Given the frequency function

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0 & elsewhere \end{cases}$$

and that you are testing the null hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$ by means of single observed value of x what would be size of type II error if $x \ge 0.5$?

- 0.5
- B 0.25
- C. 0.75
- D. 0.05

110.

Where r = 0, the lines of regression intersect at the point -

- (X, Y)
- $(\overline{X}, \overline{Y})$
- C. (0, 0)
- D. (1, 1)

111. In one sample of 8 observations, the sum of squares of deviations of the sample values from the sample mean was 84.4 and in the other sample of 10 observations is was 102.6, the value of statistic F is:		
1) 1.2	2) 1.057 4) 2	
3) 1.8	4) 2	
112. If X and Y are independent, the value	of correlation coefficient is equal to:	
КO	2) 1	
1) 0 3) ∞	4) any positive value	
113. The co-efficient correlation will have p	ositive, when	
1) X is increasing Y is decreasing	2) X is decreasing Y is increasing	
3) Both X and Y are increasing	4) There is no change in X and Y	
,		
114. For a symmetric distribution β ₂ is:		
1) 0	2) 1	
3) 5	2) 1 4) 3	
115. If the co-efficient of skewness of the di	stribution is zero, the frequency curve is :	
1) J shaped	2) U shaped	
3) Bell shaped	4) Z shaped	
116. The hypothesis for a specified known v	•	
l) t - test	2) Fisher - Z - test	
3) χ^2 - test	4) F - test	
,		
117. Neyman - Pearson lemma provides :		
1) an unbiased test	2) a most powerful test	
3) minimax test	2) a most powerful test 4) an admissible test	
,		
118. To test $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0, \text{ the polisis:}$	pulation S.D is known, the approximate test	
1) t - test	X7 test	
•	2) Z - test 4) F - test	
3) χ^2 - test	4) 1' - test	
110 Startified compling comes under the	atagami of	
119. Stratified sampling comes under the ca		
1) unrestricted sampling	2) subjective sampling	
3) purposive sampling	4) restricted sampling	

-

120. If $X \sim N(5, 1)$ the probability density function for the normal variable X is:

A.	1	$-\frac{1}{2}\left(\frac{x-1}{5}\right)^{2}$
	$5\sqrt{2\pi}$	e

B.
$$\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{z-1}{5}\right)^2}$$

C.
$$\frac{1}{5\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$B. \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-5)^2}$$

121. The test statistic to be used to test $H_0: \sigma^2 = \sigma_0^2 \text{ against } H_1: \sigma^2 \neq \sigma_0^2$

A.
$$\chi^2 = \frac{(n-1)\sigma_o^2}{s^2}$$

B.
$$\chi^2 = \frac{(n-1)s^2}{q^2}$$

$$\chi^2 = \frac{ns^2}{\sigma_o^2}$$

D.
$$\chi^2 = \frac{n\sigma_o^2}{s^2}$$

122.

Second central moment of F. v1, v2 distribution is given by the formula -

A.
$$\frac{2v_2^2(v_1 + v_2 - 2)}{v_2(v_2 - 2)^2(v_2 - 4)}$$

B.
$$\frac{2(\nu_1 + \nu_2 - 2)\nu_2^2}{\nu_2(\nu_2 - 2)(\nu_2 - 4)}$$

C.
$$\frac{2v_2(v_1 + v_2 - 2)}{v_2(v_2 - 2)(v_2 - 4)}$$

$$D. \frac{2\nu_2^{\ 2}(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$$

123. Standard deviation of sampling distribution:

- 1) Sampling error
- 3) Type I error

- 2) Non sampling error
- A) Standard error

124. The p.d.f of F - distribution is:

A.
$$\frac{1}{2^{\frac{N}{2}} | \frac{N}{2}} e^{-\frac{N}{2}} x^{\frac{N}{2} - 1}$$

B. $\frac{1}{\sqrt{2}B(\frac{N}{2}, \frac{N}{2})} \frac{1}{(1+t^2)^{\frac{N+1}{2}}}$

$$\frac{\left(\frac{\frac{N}{2}}{v_2}\right)^{\frac{N}{2}}}{B(\frac{\frac{N}{2}}{2}, \frac{\frac{N}{2}}{2})} \frac{F^{\frac{N+1}{2}}}{(1+\frac{N}{v_2}F)^{\frac{N+N}{2}}}$$

D. $\frac{1}{B(\frac{\frac{N}{2}}{2}, \frac{\frac{N}{2}}{2})} \frac{F^{\frac{N}{2}-1}}{(1+\frac{N}{v_2}F)^{\frac{N+N}{2}}}$

125. A problem in statistics is given to five students A, B, C, D and E whose chances of solving it one $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ and $\frac{1}{6}$ respectively, then probabilitity that the problem will be solved if all of them try independently

$$\frac{1}{2}$$

126. A random sample of 11 pairs of observations gave a correlation coefficient 0.5, then the value of t-statistic is:

127. Which of the following statement is true?

1)
$$\chi^2$$
 - test is a two tailed test

2) The value of
$$\chi^2$$
 can be negative

3)
$$\chi^2$$
 - test was devised by Laplace

128. For calculating Karl Pearson's coefficient of correlation, the data input is to be filled up in which of the following in MS Excel?

- 1) Two columns in Excel sheet
- 3) Two rows in Excel sheet
- 2) Array 1 and Array 2
 4) Two different Excel sheets

129. List down the various steps to be followed while using MS Excel for statistical data analysis.

- Excel Sheet→Formulas→More information-Statistical
- 2) Functions → Mathematical → Statistical
- 3) Excel Sheet → Mathematical → Statistical
- 4) Excel Sheet → Functions → Statistical

130. How many built in functions begin on the functions?	ie first page of guide to Excel statistical
1) 60	2) 70
3) 50	2) 70 4) 80
131. If X is a random variable, E(e ^{tx}) is know	n as:
3) Probability generating function	2) Moment generating function 4) Variance
132. The conditional probability p(^A / _B) is not	defined if p(B) =
1) 1	20
3) ½	2) 0
133. In Bayes' theorem, the probabilities P(E probabilities because: They are determined after results of the	2) They are determined before the result of
experiment	the experiment
3) They are determined before and after the results of the experiment	e 4) They are determined and fixed
134. A box contains 5 red, 3 white and 6 blue What is the probability that they are of	
1) 1.0	2) 0.9 (approximately)
 1) 1.0 3) 0.5 (approximately) 	2) 0.9 (approximately) 4) 0.247 (approximately)
3) 0.5 (approximately)	
3) 0.5 (approximately) 135. For a symmetrical distribution, the coef	
3) 0.5 (approximately)	ficient of skewness is :
3) 0.5 (approximately) 135. For a symmetrical distribution, the coeff	ficient of skewness is: 2) 3 4) -1
3) 0.5 (approximately) 135. For a symmetrical distribution, the coef	ficient of skewness is: 2) 3 4) -1
3) 0.5 (approximately) 135. For a symmetrical distribution, the coefficient of the coeff	ficient of skewness is: 2) 3 4) -1
 3) 0.5 (approximately) 135. For a symmetrical distribution, the coefficients of the symmetrical distribution of the symmetrical distributio	ficient of skewness is: 2) 3 4) -1 2) -1 < P < 1 4) $-\infty$ < P < ∞ Physics test is $\frac{2}{3}$ and the probability that he t is $\frac{14}{45}$. The probability that he passes at
3) 0.5 (approximately) 135. For a symmetrical distribution, the coefficient of the coeff	ficient of skewness is: 2) 3 4) -1 2) -1 < P < 1 4) - ∞ < P < ∞ Physics test is $\frac{2}{3}$ and the probability that he t is $\frac{14}{45}$. The probability that he passes at ty that he passes the Chemistry test? 2) $\frac{2}{5}$ 4) 0
3) 0.5 (approximately) 135. For a symmetrical distribution, the coeff (1) 1 (2) 0 136. The probability 'P' always lies between (1) 0 < P < \infty	ficient of skewness is: 2) 3 4) -1 2) -1 < P < 1 4) $-\infty$ < P < ∞ Physics test is $\frac{2}{3}$ and the probability that he t is $\frac{14}{45}$. The probability that he passes at ty that he passes the Chemistry test? 2) $\frac{2}{5}$ 4) 0 then p(A \cap B) is:
3) 0.5 (approximately) 135. For a symmetrical distribution, the coeff (1) 1 (2) 0 136. The probability 'P' always lies between (1) 0 < P < \infty	ficient of skewness is: 2) 3 4) -1 2) -1 < P < 1 4) $-\infty$ < P < ∞ Physics test is $^{2}\sqrt{3}$ and the probability that he t is $^{14}\sqrt{45}$. The probability that he passes at ty that he passes the Chemistry test? 2) $^{2}\sqrt{5}$ 4) 0 hen p(A \cap B) is: 2) p(A) - p(B)
3) 0.5 (approximately) 135. For a symmetrical distribution, the coefficient of the coeff	ficient of skewness is: 2) 3 4) -1 2) -1 < P < 1 4) $-\infty$ < P < ∞ Physics test is $\frac{2}{3}$ and the probability that he t is $\frac{14}{45}$. The probability that he passes at ty that he passes the Chemistry test? 2) $\frac{2}{5}$ 4) 0 then p(A \cap B) is:

• .

 139. If β₂ > 3, the distribution is called as: 1) Meso kurtic 3) Lepto kurtic 	2) Platy kurtic4) Skewness
140. Baye's probability is also known as: 1) Inverse probability 3) Classical probability	2) Subjective probability4) Laplace's probability
141. Classical probability is measured in term1) An absolute value3) Both absolute value and ratio	s of: 2) A ratio 4) A constant value
142. The probability of throwing an odd sum	with two fair dice is :
1) ¹ / ₄ 3) 1	2) ½ 4) ½
143. For any two events A and B, then p(A-B)	is equal to:
1) p(A)-p(B) 3) p(B)-p(AB)	2) p(B)-p(A) 4) p(A)-p(AB)
144. Given that $p(A)=\frac{1}{3}$, $p(B)=\frac{3}{4}$ and $p(AUB)=\frac{1}{3}$	$=^{11}/_{12}$, the probability p(B/A) is:
1) 1/6	2) ⁴ / ₉ 4) ¹ / ₈
145. Probability generating function (p.g.f. $G_x(t)$ is equal to -	is
A. $\sum_{a \nmid x} e^{tx} p(x)$	
$B.$ $\sum_{a x} p(x)t^x$	
$\mathbf{C}.$ $\sum_{\boldsymbol{x} \neq \mathbf{x}_i} \mathbf{p}_i \mathbf{x}_i$	
D. $\sum_{\alpha \mid \mathbf{x}_i} p_i(\mathbf{x}_i)$	
146. If X is a random variable, the E(t ^x) is known in Characteristic function	own as: 2) Moment generating function
3) Probability Generating function	4) Xth moment

- 148. The probability that a leap year will have 53 Sundays is:
 - 1) $\frac{1}{7}$ 3) $\frac{2}{53}$ 4) $\frac{52}{7}$
- 149. Three boxes of same appearance have the following proportions of white and black balls. Box I contains 1 white and 2 black; Box II contains 2 white and 1 black and Box III contains 2 white and 2 black balls. One of the boxes is selected at random and one ball is drawn randomly from it. It turns out to be white. The probability that the ball is chosen from the third box is:

147. Two dice are rolled by two players A and B. A throws 10, the probability that B

- 150. Moment generating function of rectangular distribution defined over the interval [a,b] is:

 A. $M_x(t) = \frac{e^{tb} e^{ta}}{t(b-a)}$ B. $M_x(t) = \frac{e^{t(b-a)}}{t(b-a)}$ C. $M_x(t) = \frac{e^{(tb-ta)}}{b-a}$ D. $M_x(t) = \frac{e^{t(b-a)}}{t_x(b-a)}$
- 151. If the m.g.f of a random variable X is $\left(\frac{2}{3} + \frac{1}{3}e^{t}\right)^{9} \text{ then } p(\mu 2\sigma < x < \mu + 2\sigma) \text{ is :}$ $A. \sum_{r=0}^{5} {9 \choose x} \left(\frac{1}{3}\right)^{r} \left(\frac{2}{3}\right)^{9-r}$ $B. \sum_{r=0}^{5} {9 \choose x} \left(\frac{2}{3}\right)^{r} \left(\frac{1}{3}\right)^{9-r}$ $C. \sum_{r=0}^{9} {9 \choose x} \left(\frac{2}{3}\right)^{r} \left(\frac{1}{3}\right)^{9-r}$ $D. \sum_{r=0}^{9} {9 \choose x} \left(\frac{2}{3}\right)^{r} \left(\frac{1}{3}\right)^{9-r}$

	5% confidence interval for the mean of a	
n	ormal $N(\mu, \sigma^2)$, population is (σ known)-	
A	$\frac{1}{x} \pm 2.58 \sigma / \sqrt{n}$	
B	$x \pm 1.96 \sigma / \sqrt{n}$	
C	$\frac{\overline{x} \pm 1.64 \sigma}{\sqrt{n}}$	
D	. None of these	

2) 5.49

152. If the mode of a frequency distribution is 16 and its mean =16, then the median of

1) 3.49

From a sample survey conducted by an office to find the average sales of two sales men A and B the following results were obtained. No. of sales 10 18 Average Sales (Rs) 170 205 S.D. (Rs) 20 To test the difference between means the value of t is calculated as: 4.89 5.39 1.28 D. 3.79

157.	The correlation coefficients 0.89 and 0.85 were computed from two independent
	samples of sizes 12 and 16 respectively. The test statistic for testing the hypothesis
	that the two samples have come from two bivariate populations with different
	correlation coefficient is:

158. For testing the significance of correlation $\gamma = 0.5$ from a sample of size 18 against the hypothesis that correlation $\rho = 0.7$, the value of test statistic Z is:

159. The standard deviations of two random samples of size 9 and 13 are 2.1 and 1.8 respectively. The calculated value of F for testing the difference in variances is given by:

160. The ratio $\frac{S_1}{S_2}$ of two sample variances follows ____ under the hypothesis $\sigma_1^2 = \sigma_2^2$

161. Equality of several normal populations' means can be tested by _____.

162. Testing	g of H_0 : μ =100 against μ > 100	leads to
•	tailed test sided lower tailed test	2) One sided upper tailed test 4) Power of test
	lidity of a hypothetical value tion can be tested by	of proportion in a class of dichotomous
l) χ² - t	est	2) t-test
3) Z-te:	st	4) F-test
	ic $-\chi^2$ - test to test H_0 : $\sigma^2 = \sigma_0^2$ is m equal to :	based on a sample of size 'n' has degrees of
1) n-1		2) n
3) n+1		4) 1
1) Agra 3) Biole		nated in: 2) Industrial research 4) Baysian research ons required for t-test in a sample size is: 2) n < 30
3) 2		4) 5
	error is ct H ₀ when H ₀ is true	2) Reject H_1 when H_1 is true
3) Acce	ept H ₀ when H ₀ is false	4) Accept H ₁ when H ₁ is false
168. Testing	g H₀ :μ=1100 against H₁ :μ≠11	100 leads to :
	tailed test tailed test	2) Right tailed test4) Optimum test

 $\overline{\overline{X}}$ is the sample mean based on a sample size n from a population with variance σ^2 . Then standard error of \overline{X} is:

- $\sigma^{2/n}$
- В.

D.

170. The hypothesis tested using normal distribution is:

1) $H_0: \rho = 0$

3) $H_0:\sigma^2 = \sigma_0^2$

171. Paired t-test is used for:

- 1) Testing the equality of variances
- 2) Testing the equality of means of two independent samples
- 3) Testing the equality of means of paired observations of dependent samples
- 4) Testing the single mean

172. To test the equality of population variances, the test statistic is:

- 1) t -test
- 3) χ^2 test

- 2) F test 4) Normal test

173. To test the hypothesis $H_0: \sigma^2 = \sigma_0^2$ based on a sample size 10 drawn from $N(\mu, \sigma^2)$, the test statistic has:

- 1) x92
- 3) χ_{10^2}

- 2) t₉
- 4) t_{10}

174.	If X_1 , X_2 , X_n is a random sample from normal population. The p.d.f of λ is $f(x) = \frac{1}{\theta \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x_1^2}{\theta^2}\right)}$ The MLE for θ is:			
	$A. \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	B. $\sum x_i^2/n$			
	C. $\frac{\sqrt{\sum x_i^2}}{n}$			
/	$D. \sqrt{\frac{\sum x_i^2}{n}}$			

175. If an estimator T_n of population parameter θ converges in probability to θ as n tends to infinity is said to be:

1)	Sufficient
34	Consistent

2) Efficient

4)	U	nl	oia	as	ed
٠,	_	.,,	<i>-</i> • • • • • • • • • • • • • • • • • • •	~~	ų u

176. The maximum likelihood estimate of the parameter α of a population having density function

$$f(x) = \frac{2}{\alpha^2} (\alpha - x), \ 0 < x < \alpha$$

For a sample of unit size is:

1	A.	2α
	B.	α^2
-	Q.	2x
	D.	αx

177. If $E(T_n)>0$, the estimator T_n is said to be:

1) Biased

2) Unbiased

3) Sufficient

4) Consistent

178. If an unbiased estimator T_n is such that for any other unbiased estimator T_n , $V(T_n) \leq V(T_n^*)$, T_n is a _____.

K	UMVUE
/	1 (1 1)

2) MVB

3) MLE

4) BAN

170	If t is a	consistent	estimator	of A	then t2	is a	estimator	of A2
1/9.	IIIIS A	consistent	esumator	or o,	men i	18 a	estimator	OI Q.

1) consistent

2) efficient

3) sufficient

4) unbiased

180.

An estimator $T_1 = t_1 (x_1, x_2, ... x_n)$ for θ is said to be admissible if for any other estimator $T_2 = t_2(x_1, x_2...x_n)$ for θ , the relation is of the type -

A.	R	(t.1.	(0)	> R	(t.o.	θ)
1 1.	T	$(v_1,$	\sim	,	(02,	9

B.
$$R(t_1, \theta) = R(t_2, \theta)$$

$$R(t_1, \theta) \leq R(t_2, \theta)$$

D.
$$R(t_1, \theta) + R(t_2, \theta)$$

181. If T_n and T_n^* are two estimates such that $V(T_n) = V(T_n^*)$, then _____.

- 2) T^{*}_n/T_n 4) T^{*}_n+T_n

182. Least square method is a device to obtain the estimate of a:

HBLUE

2) UMVUE

3) CANE

4) MLE

183. If $x_1, x_2,...x_n$ is a random sample from N(µ, 1), then the unbiased estimator of $\mu^2 + 1$ is:

- 184. Efficiency E cannot exceed:
 - 1)1

2) 0

3) -1

4) 5

185. The statistical constant which is used to statistic computed from the samples of known as:	o measure the variability of the values of a the same size drawn from the population is					
Standard deviation Standard error	2) Sample proportion4) Sample correlation					
186. In simple random sampling technique each unit of the population is selected:						
1) according to a predetermined pattern	2) by giving equal and independent chance for selection					
3) on the basis of the discretion of the investigator	4) on the basis of auxillary information					
187. Stratified sampling comes under the category of :						
1) Unrestricted sampling	2) Restricted sampling 4) Purposive sampling					
3) Subjective sampling	4) Purposive sampling					
188. In simple random sampling, the probability of selecting a specified unit in the sample selected out of population units is						
1) ½ 3) %	2) / _N 4) N/ _n					
189. In case of sample enquiry: Y) Only part of the population will be studied	2) Whole population will be studied					
3) Only one unit is studied	4) It consists of infinite number of units					
190. If a constant 50 is subtracted from each of the value of X and Y, then the regression coefficient is:						
1) reduced by 50	2) increased by 50					
3) not changed	4) $\frac{1}{50}$ of the original regression co-efficient					
191. The two regression lines are						
3x - 4y + 8 = 0						
4X - 3Y - 1 = 0.						
The means of \overline{X} and \overline{Y} are:						
$\overline{X} = 4$, $\overline{Y} = 5$						
B. $\overline{X} = 3$, $\overline{Y} = 4$						
C. $\overline{X} = 4/3$, $\overline{Y} = 5/4$						
D. $\overline{X} = 5$, $\overline{Y} = 6$						

٠,

192. In a multivariate analysis, the correlation between any two variables eliminating the effect of all other variables is called:

- 1) Simple correlation
- 3) Partial correlation

- 2) Multiple correlation
- 4) Partial regression
- 193. In multiple regression analysis the multiple regression coefficient b123 is given
- 194. From height (X1) in inches, weight (X2) in kg. and age (X3) in years of a group of students the following results were obtained: $\overline{X}_1 = 40$, $\overline{X}_2 = 50$, $\overline{X}_3 = 20$, $S_1 = 3$, $S_2 = 2$ $S_3 = 2$, $r_{12} = 0.4$, $r_{23} = 0.5$, $r_{13} = 0.7$ The value of X_3 given $X_1=43$ inches. $X_2=54 \text{kg is}$: A. 25 years B. 18 years e. 22 years 20 years

195. The geometric mean of the two regression co-efficient is equal to:

- 1)r
 - 3) 1

- 2) r²
- 4) 0

196. The limits for correlation coefficient is:

- 1) $-\infty < r < \infty$
- 3) 0 < r < 1

- $2) -1 \le r \le 1$ $4) 0 < r < \infty$

The rank correlation coefficient is given by the formula?

A.
$$\rho = \frac{6\sum d^2}{n(n^2 - 1)}$$

B.
$$\rho = 1 - \frac{6\sum d}{n^2 - 1}$$

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

$$\mathbf{D}. \quad \rho = \frac{6\Sigma d}{n^2 - 1}$$

198. If $b_{yx} > 1$, then b_{xy} is:

- 1) less than I
 - 3) equal to 1

- 2) greater than 1
- 4) equal to 0

199. The term 'regression' was introduced by:

1) R.A. Fisher

2) Sir Francis Galton

3) Karl Pearson

4) W.S. Gosset

200. If $b_{xy} = 0.8$ and $b_{yx} = 0.46$, then correlation coefficient is :

1) 0.134

2) 0.606 4) 0.312

3) 0.254