COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POST)

COMPUTER BASED TEST

DATE OF EXAM: 21.07.2025 FN

PAPER - II - BIO-TECHNOLOGY

(PG DEGREE STANDARD) (CODE: 471)

	(A)	Biofunctionality	(B)	Bioa	vailabilit	у		
	(C)	Biocompatibility	(D)	Bioe	quivalen	ce		
	(E)	Answer not known						
2.		scientist pioneered chemical to the major contribution to N				nos	ystem 1	that
	(A)	Eric Drexler	(B)	Rich	ard Sma	lley		
	(C)	Robert Curl	(D)	Chao	d Mirkin			
	(E)	Answer not known						
3.		controlled release of drug	deli	very	system	is	maxin	ıum
	(A)	Rate - preprogrammed drug o	lelive	ry sy	stem			
	(B)	Activation - modulated drug		1976				
	(C)	Feedback - Regulated drug do						
	(D)	Site - targeting drug delivery		-				
	(E)	Answer not known						
4.		ended three dimensional latti yzed by	ices (of DN	VA nano	stru	ctures	are
	(4)	X-ray crystallography						
	(B)	Cryo-electron microscopy						
	(C)	Transmission electron micros	сору					
	(D)	Atomic force microscopy						
	(E)	Answer not known						

The primary characteristic of a bionanomaterial is

1.

5.		To enable targeted imaging in Optical Projection Tomography (OPT) he nanoparticle used as contrast enhancer.						
	45	Gold nanoparticle	(B)	Silver nanoparticle				
	(C)	Zinc nanoparticle		Titania nanoparticle				
	(E)	Answer not known		8				
6.		urface analysis technique that energy electrons collide with a s		10 miles				
	(A)	Raman spectroscopy	(B)	Electron spectroscopy				
	(C)	Mass spectroscopy	(D)	Particle spectroscopy				
	(E)	Answer not known						
7.	mon	ne the protein layer that has the omolecular protein lattice or corts.						
	(A)	Capsule layer	(B)	S-layer				
	(C)	Slime layer	(D)	Glycoprotein layer				
	(E)	Answer not known						
8.		among the following which is sted protein folding.	NO	T involved in the process of				
	(1)	Peptide bond hydrolysis	(B)	Heat shock protein				
	(C)	Disulfide interchange	(D)	Chaperonin				
	(E)	Answer not known						

- 9. Choose the correct dimension of the Nanometers (nm)
 - (i) Protein 5-50 nm
 - (ii) Atom 2 nm
 - (iii) DNA (width) -0.1 nm
 - (A) (i) and (iii) are correct
- (B) (ii) is correct

(i) is correct

- (D) (ii) and (iii) are correct
- (E) Answer not known
- 10. Choose the following was correct range of 'nm' in DNA based Nano structure.
 - (A) 100 1000 nm

(B) 10 - 200 nm

(e) 10 – 100 nm

- (D) 1000 2000 nm
- (E) Answer not known
- 11. Who was first measured the size of the Nanoparticles?
 - (A) Richard Feynman 1959
 - Richard Zsig-Mondy 1925
 - (C) Norio Taniguchi 1974
 - (D) Binnig and Heinrich Rohrer 1981
 - (E) Answer not known

12.	Which	among	the	following	was	the	important	perform	of	Magnetic
	Nanon	naterial	s?							

- Low Temperature and High Magnetic field conditions
- (B) Low Temperature and Low Magnetic field conditions
- (C) High Magnetic field conditions and High Temperature
- (D) Low Magnetic field and High Temperature
- (E) Answer not known

13. Correctly paired the nanomaterial preparation and their corresponding host

- (1) Silver Escherichia Coli
- (2) Cadmium Sulphide Escherichia Coli
- (3) Magnetite Actinobacteria
- (4) Gold Lactobacillus
- (A) (1) and (3) are correct
- (B) (2) and (4) are correct
- (C) (4) and (1) are correct
- (2) and (3) are correct
- (E) Answer not known

14. Choose the right answer

Bio MEMS are being researched for possible application sectors in Nanobiotechnology filial

- (i) Biological imaging
- (ii) Tissue and stem cell engineering
- (iii) Neurosurgical treatments
- (iv) Lab on a chip experiments
- (A) (i) and (ii) only

(B) (ii) and (iii) only

(C) (i) and (iv) only

- (i), (ii), (iii) and (iv)
- (E) Answer not known
- 15. Name the causative agent for anaerobic wound infection.
 - (A) E. coli

- (B) Proteus
- B. melaninogenicus
- (D) Staph. aureus
- (E) Answer not known
- 16. Choose the wrong matches type
 - 1. Palisade arrangement
- Corynebacterium diptheria

2. Streptobacilli

Bacillus subtilis

3. Diplobacilli

- Streptococcus

4. Trichomes

- Staphylococcus

(A) (3) and (4)

(B) (1) and (2)

(C) (2) and (3)

- (D) (3) and (1)
- (E) Answer not known

17.	7. Who identified the causative agent of tuberculosis?			iberculosis?
	(A)	Columbus	(B)	Robert Koch
	(C)	Christopher	(D)	Girolamo
	(E)	Answer not known		a a
18.	Yello	ow fever was discovered by		
	(1)	Walter Read	(B)	Oscar Median
	(C)	Jacob Von Heine	(D)	William Popper
	(E)	Answer not known		
19.		process of converting substance to amino gp is called as	es co	entaining protein and organic
	(A)	Animation	(B)	Aminization
	(C)	Ammoniphication	(D)	Acidification
	(E)	Answer not known		
20.	The	leaf surface is called as		
	SAS	Phyllophane	(B)	Phyllosphere
	(C)	Rhizosphere	(D)	Habitat
	(E)	Answer not known		
21.	The	mixture of wood and bark wast	e bu	rnt collectively called as
	(A)	Solid waste	(B)	Hog fuel
	(C)	Ash	(D)	Compressed wood
	(E)	Answer not known		

22.		nobilized white rot fungus is	used to remove	_ from
	5 207	er mill.	3-3	
	(A)	Metals	(B) Dyes	
	(C)	Brown lignin compound	(D) Sewage	
	(E)	Answer not known		
23.	The	average size of bacterial cell	is diameter.	
	(A)	0.001 mm in diameter		
	(B)	0.0001 mm in diameter		
	(C)	0.00001 mm in diameter		
	(D)	0.01 mm in diameter		
	(E)	Answer not known		
			4	
24.	Wha	at bacteria is used for the pro	duction of sorbase?	
	SA	Gluconobacter	(B) Saccharomyces	
	(C)	Acetobacter	(D) Pediococcus	
	(E)	Answer not known		
0.5	3371. *	-1)
25.			t a source of organic nitrogen	
	(A)	Beef extract	(B) Yeast extract	
	(C)	Peptone	(B) Agar	
	(E)	Answer not known		
26.		eukaryotes the oxidative abrane of	phosphorylation occur in	inner
	(A)	Cell wall	(B) Mitochondria	
		Nucleus	(D) Vacuoles	
	(E)	Answer not known	A 000	

27.		ne following identify the gy source	e chemotrop	h which util	ize ammonia as
	(A)	Nitrosomonas	(B)	Nitrobacter	
	(C)	Beggiatoa	(D)	Thiobacillus	ia (
	(E)	Answer not known			
28.	- 1000	glycolytic pathway the ose and galactose in the			s converted to
	(A)	Fructokinase	(B)	Galactosidas	se
	(C)	Glucosidase	(D)	Aldolase	
	(E)	Answer not known			
29.	ş	source of enzyr	nes are com	amercially be	tter.
	(A)	Plant	(B)	Animal	
	(e)	Microbial	(D)	Metal	
	(E)	Answer not known			
30.		enzyme which has amia is	potential a	application i	n Lymphocytic
	(4)	Asparaginase	(B)	Oxidases	
	(C)	Catalases	(D)	Proteases	
	(E)	Answer not known			
31.	Mich	naelis – Menten equation	n is		
	W	$v = \frac{V_{\text{max}}[S]}{[S] + K_{\text{m}}}$	(B)	$\mathrm{E} = \mathrm{MC}^2$	
	(C)	$\mathbf{M}_1 + \mathbf{M}_2 = \mathbf{M}_3 + \mathbf{M}_4$	(D)	$X = Y + c^2$	

10

(E) Answer not known

471-Bio-Technology

32.	The	dissolution of blood clots is don	e by	the enzyme
	(A)	Amylase	(B)	Esterase
	(C)	Pepsin	(D)	Urokinase
	(E)	Answer not known		
33.	The	enzyme used for leather soften	ing	
	(A)	Proteases	(B)	Ligase
	(C)	Lipases	(D)	Pectinase
	(E)	Answer not known		
34.	Which	ch among the following is true a	abou	t enzyme?
	(1)	Pass through dialysis membra	ane	
	(2)	Denature by heat		
	(3)	It is not precipitated by ethan	ol	
	(4)	Precipitated by Ammonium su	ılfat	е
	(A)	(1) and (2)	(B)	(3) and (4)
	ser	(2) and (4)	(D)	(1) and (3)
	(E)	Answer not known		
35.		the class of enzymes that	carr	yout addition of removal of
	grou	p of atoms without water.	(T)	
	(A)	Lyase	10 00	Ligase
	(C)	Transferase	(D)	Isomerase
	(E)	Answer not known		

36.	The is	substance that enhance the in	ımun	ne response to an immunoger
	(1)	Adjuvant	(B)	Hapten
	(C)	Epitope	(D)	Paratope
	(E)	Answer not known		
37.		the below, which enzyme unosorbent assay	is u	utilized in enzyme linked
	(K)	Horse radish peroxidase	(B)	Catalase
	(C)	Phosphatase	(D)	Ligases
	(E)	Answer not known		
38.	Phag	gosome is a		
	(A)	Nucleus	(B)	Vacuole
	(C)	Cell	(D)	Cyst
	(E)	Answer not known		
39.	The	coat proteins are called as		
	(A)	Opsonins	(B)	Prions
	(C)	Virions	(D)	Toxin
	(E)	Answer not known		
40.	The	hair desiccation and brittlenes	s can	n be prevented by
	(A)	Sebum	(B)	Serum
	(C)	Saliva	(D)	Tears
	(E)	Answer not known		

41.	The	hypothesis of p	hagocytosis was	pro	posed by
	(A)	Emil Von Beh	ring	(B)	Karl Landsteiner
	(C)	Elie Metchnik	off	(D)	Jules Bordet
	(E)	Answer not ki	nown		
42.	Bloo	d clotting is the	e main function	of th	e
	(A)	Granulocytes		(B)	Agranulocytes
	C	Thrombocytes	i .	(D)	Phagocytes
	(E)	Answer not ki	nown		
43.				otat	tion pipeline uses annotation
		distance as a q	uanty metric:	(T)	TO LOTE A TO A
	(A)	PASA			ENSEMBL
	(C)	BRAKER 1		(Cold)	MAKER 2
	(E)	Answer not ki	nown		
44.	Whi	ch of the follow:	ing statement is	triid	<u> </u>
44.					
	Asse	rtion [A] :	cG is the leas genomes.	t ire	equent dinucleotide in many
	Reas	son [R] :			ide is often methylated and educing its frequency
	(A)	Both [A] and [[R] are false		
	(B)	Both [A] and [[R] are true		
	(C)	[A] is true but	[R] is false		
	(B)	[A] is true and	R [R] is the corre	ct ex	xplanation of [A]
	(E)	Answer not kn	nown		900 (7)

45.	The distance between two	vo genes in a chromosome is measured in resent
	(A) Ratio of crossing over	er between them
	(B) Percentage of crossi	ng over between them
	(C) Number of crossing	over between them
	(D) Similarity of crossing	ng over between them
	(E) Answer not known	
46.	Overlaping fragments fro	m different restriction enzymes help to
	(A) Visualize chromoson	me shape
	Align and reconstru	ct the complete DNA sequence
	(C) Transcribe RNA mo	lecules
	(D) Measure DNA repli	cation speed
	(E) Answer not known	
47.	An assembled sequence fr	rom overlapping fragment is called
	(A) Coverage	(B) Clones
	(C) Contig	(D) Scaffold
	(E) Answer not known	
48	Why is codon hias signific	eant in genetic analysis?

Why is codon bias significant in genetic analysis?

(A) It aids in identification of coding regions

It accelerates genome application in eukaryotes

- (C) It regulates ribosome binding
- (D) It helps in understanding codon mutation
- (E) Answer not known

49.		first bacterial sequence obtai roach and published was the se						
	(A)	Escherichia coli	(B)	Bacillus subtilis				
	ser.	Haemophilus influenzae	(D)	Mycobacterium sp.				
	(E)	Answer not known						
50.	Arrange the following next generation sequencing platform, by increasing order of read-lengths of the platform							
	(1)	Roche 45h						
	(2)	Illumina solexa						
	(3)	Abi solid						
	(4)	PacBio						
	(A)	(1), (3), (4), (2)	(P)	(3), (2), (1), (4)				
	(C)	(2), (4), (3), (1)		(2), (3), (1), (4)				
	(E)	Answer not known						
51.		colexa sequencing, the approxicated for sequencing is	mate	e DNA fragment size range				
	(A)	50-100 bp	(B)	100-200 bp				
	(e)	250-350 bp	(D)	350-600 bp				
	(E)	Answer not known						

52.	How	is the light emitted during pyro sequencing is detected
	(A)	Mass spectrometer
	(B)	Charge-coupled device camera
	(C)	Electron microscope
	(D)	Light microscope
	(E)	Answer not known
53.		ection of clones representing the complete genome of an nism is known as
	(A)	DNA clones (B) Genomic library
	(C)	Molecular map (D) Genetic map
	(E)	Answer not known
54.		ch one of the following is NOT commonly used genetic markers enetic map?
	(A)	VNTR
	(B)	Micro satellite polymorphism
	10	Novel mutations
	(D)	Single Nucleotide Polymorphisms (SNPs)
	(E)	Answer not known
55.		ch one of the following databases is used for prediction of entire eomes?
	(A)	CMR (B) PEP
	(C)	MBGD (D) KEGG
	(E)	Answer not known

56.		en is the bit score genera nment?	ally considered to represent a good
	If th	e bit score is	
	(A)	Greater than 50	(B) Less than 25
	(C)	When it is near to 0	(D) When it is exactly 100
	(E)	Answer not known	
57.		flybase database serves a rmation related to	s a database of genetic and genomic
	(A)	Homo sapiens	
	(B)	Drosophila melanogaster	
	(C)	Saccharomyces cerevisiae	
	(D)	Escherichia coli	
	(E)	Answer not known	
58.	The	primary function of PHI-B	LAST is to
	(A)	Compare protein structur	e coordinates
	(B)	Search for proteins with s	equence motif similar to query
	(C)	Identify similarities in nu	cleotide sequences
	(D)	Analyze expressed sequen	ace tags
	(E)	Answer not known	
59.	The	sequence alignment algori	hm used for global alignment is
	(A)	Fast A algorithm	,
	(B)	Smith and Waterman alg	orithm
	(C)	Blast algorithm	

Needleman and wunsch algorithm

Answer not known

60.	a lin	type of gap penalty that penalear function in which one term th independent is		
	(A)	indel gap penalty	(B)	affine gap penalty
	(C)	match gap penalty	4	pam gap penalty
	(E)	Answer not known		
0.1	m	11		
61.		blast varient used to analyze eotide in database is		-
	(A)	BLASTx	(B)	TBLASTn
	(C)	TBLASTx	(D)	BLASTp
	(E)	Answer not known	51	
62.	A to	ol used for submission of prote	ein str	ructure to PDB is
	(A)	ADIT	(B)	BlankIT
	(C)	Seqin	(D)	PDBSUM
	(E)	Answer not known		
63.		database that provides infor way is	matio	n about biological/Metabolic
	(A)	KEGG	(B)	Prosite
	(C)	Prints		Blocks
	(E)	Answer not known		

64.		URL of a webpage/file in webpage comprises following parts nged in the following correct order
	1.	The protocol
	2.	The domain name
	3.	The top level domain
	4.	The file name

(A) 1, 4, 2, 3 (B) 1, 3, 2, 4 (C) 3, 1, 2, 4 (D) 1, 2, 3, 4

(E) Answer not known

- 65. Which one of the following indicates conserved sequence?
 - (A) When a specific segment of genetic material does not pass through generations
 - (B) When a specific segment of genetic material have variations
 - When a specific segment of genetic material remains unchanged across different species
 - (D) When a specific sequence undergoes cleavage
 - (E) Answer not known
- 66. Which one of the following cells has shine-Dalgarno sequence?

(A) Bacterial cells
(B) Eukaryotic cells
(C) Plant cells
(D) Animal cells

(E) Answer not known

67.		ch one			owing	g methods helps sequencing amino acids
	(A)	. Dide	eoxy n	nethod		
	(B)		1.5			nethod
	(C)			ilbert i		
	(D)			minati		
	(E)			ot knov		
	(11)	21115	WCI II	ot Kilov	, V 11	
68.	Wha	at is m	ultipl	e sequ	ence	alignment?
	(A)	Align	nmen	t of a v	ariab	le number of tandem repeats
	(B)	Align	nmen	t of a q	uery	sequence with a reference sequence
	(C)	Alig	nmen	t of a q	uery	sequence for multiple times
	(D)	Align	nmen	-	a qı	aery sequence with more than two
	(E)			ot knov		
69.		ch th		owing	BLA	AST programs with the type of query
		Blast	progr	am		Query sequence
	(a)	Blast	N		1.	Translated nucleotide sequences
	(b)	T blas	st N		2.	Nucleotide sequence
	(c)	Blast	X		3.	Aminoacid sequence
		(a)	(b)	(c)		
	(A)	1	2	3		
	(B)	2	3	1		
	(C)	1	3	2		
	(D)	2	1	3		The state of the s
	(E)	Ansv	ver no	ot knov	vn	

70.			d uses geometric criteria to assess nal domains is a protein structure
	(i)	VAST	
	(ii)	BLAST	
	(iii)	FASTA	
	(A)	(i) only	(B) (ii) and (iii)
	(C)	All the above	(D) None of the above
	(E)	Answer not known	
71.	The	E-valve in the BLAST result re	epresents
	(A)	Sequence coverage	
	(B)	Sequence identity percentage	e ·
	(C)	Presence of ancestor sequence	es
	(B)	Significance of the alignment	
	(E)	Answer not known	
72.			d that uses the 3-dimentional the conformational changes in the
		ein is	me comormational changes in the
	(A)	Molecular docking	(B) Molecular dynamics
	(C)	Homology modeling	(D) Threading
	(E)	Answer not known	
73.	Reco	mbinant factor VII is isolated	from
	(A)	Transgenic chicken	(B) Transgenic tilapia
	(C)	Transgenic pig	(D) Transgenic mice
	(E)	Answer not known	

74.	. Ti plasmid vir E ₁ gene's main function				
	(A)	Production	(B)	Regulation	
	(0)	Transport	(D)	Synthesis	
	(E)	Answer not known			
			56 TS 156	and the state of t	
75.		embryogenesis is a bi	ipolar	in nature	
	(A)	Somatogenetic	(B)	Organogenetic	
	(C)	Diplo genetic	(D)	Inorgano genetic	
	(E)	Answer not known			
	_				
76.		lantibodies ScFvs comprise tl chain joined together by a	he va	riable regions of heavy and	
	(A)	Hydrogen bond	(B)	Flexible linker peptide	
	(C)	Disulphide bond	(D)	Flexible adaptor peptide	
	(E)	Answer not known			
77.		er mouse was created by in none into the gen		ng a rat gene for growth	
	(A)	Human	(B)	Mouse	
	(C)	Pig	(D)	Sheep	
	(E)	Answer not known			
78.		antibody used for the	dete	ction of breast epithelium	
	(A)	lpha -albumin	(B)	α -lactalbumin	
	(C)	lpha -fetoprotein	200000000000000000000000000000000000000	α -vimentin	
	(E)	Answer not known			

79.	CaN	aMv is accumulated in proteinaceous inclusions called				
	(A)	Ino plasm	(B) Cauli plasm			
	(C)	Rhizo plasm	(B) Viro plasm			
	(E)	Answer not known				
80.	Sing it ca		op into embryoids without callus			
	(A)	Direct somatic embryogenesis				
	(B)	Indirect somatic embryogenes	iis			
	(C)	Organogenesis				
	(D)	Embryogenesis				
	(E)	Answer not known				
81.	Eacl form	_	tion into shoots and roots and			
	(A)	Calli	(B) Plantlet			
	(C)	Clone	(D) Blower			
	(E)	Answer not known				
82.	Cho	ose the right answer				
	Whi	ch are following household haza	ardous waste?			
	(A)	Domestic waste	(B) MSW			
	10	Crankcase oil	(D) Agriculture waste			
	(E)	Answer not known				

83.	Choose the right answer				
	Which is high concentration of contaminants domestic solid waste?				
	(A)	1000 mg/L	(B) 2000 mg/L		
	(C)	$1200 \mathrm{\ mg/L}$	(D) 2200 mg/L		
	(E)	Answer not known			
84.		micro organism are present a surface of the filter particular	s a layer called on		
	(A)	Bio mining	(B) Biofilm		
	(C)	Bio piracy	(D) Bio fuel		
	(E)	Answer not known			
85.		rocarbons in the presence consible for the formation of	of nitrogen oxides are mainly		
	(A)	Phyto chemical smog	(B) Physio chemical smog		
	(C)	Poly chemical smog	(D) Photo chemical smog		
	(E)	Answer not known			
86.		ch of the following includes a services of one trader from thos	sign that can distinguish goods e of another		
	(Λ)	Design	(B) Trademark		
	(C)	Patent	(D) Copyright		
	(E)	Answer not known			

87.	[A]	: The Indian potent act di pharmaceuticals foods and	lid not allow product protects in agrochemicals.
	[R]	1	nent the now the Indian potent act scept some specified medicines
	(A)	[A] and [R] is correct	
	(B)	[A] is false [R] is correct	
	(C)	[A] is correct and [R] is false	
	(D)	[A] and [R] is false	
	(E)	Answer not known	
88.	Once	ogenes are inactivated by	gene therapy.
	(A)	Invivo	(B) Antisense
	(C)	In vitro	(D) Ex vitro
	(E)	Answer not known	
89.	Extr	emozymes are derived from	
	(i)	Mesophiles	
	(ii)	Psychrophiles	
	(iii)	Thermophiles	
	(iv)	Extremophiles	
	(A)	(i) and (iv)	(B) (ii) and (iv)
	(C)	(ii) only	(D) (iv) only
	(E)	Answer not known	

90.	2277	bacterium tumefaciens, a soil bacterium is responsible for hone of the following diseases?
	(A)	Green disease (B) Crown gall disease
	(C)	Leptospirosis (D) Tuberculosis
	(E)	Answer not known
91.	[A]:	Enriching seawater with 0.05% asparagine or glucose leads to significant increase in oxygen consumption.
	[R]:	Asparagine and glucose are not utilized as energy sources by marine microorganisms.
	(A)	Both [A] and [R] are true
	(B)	Both [A] and [R] are false
	(C)	[A] is true and [R] is the correct reason for [A]
	(B)	[A] is true but [R] is not the correct reason for [A]
	(E)	Answer not known
92.		r food to microorganism (F/M) ratio in biological waste water ment will lead to
	(i)	Lower BOD removal
	(ii)	Higher BOD removal
	(A)	(i) only (B) (ii) only
	(C)	Both (i) and (ii) (D) None of the above
	(E)	Answer not known

93.	The name of the marine source which contains lipids and fatty acids found in their membranes and used in the intracellular components as a energy reserve					
	(A)	Corals	(B)	Thermophiles		
	40)	Micro algae		Psychophiles		
	(E)	Answer not known	100 10			
94.	umb	gene was transfered into ilical cord blood, at the time infants received the modified	of bab	y's delivery. Af		
	(A)	2 days	(B)	4 days		
	(C)	15 days	(D)	30 days		
	(E)	Answer not known				
95.		cloned DNA fragments is tra for probing is called	anscrib	oed into mRNA	with specific	
	(A)	End-specific RNA probes				
	(B)	End-specific DNA probes				
	(C)	End-specific cDNA probes				
	(D)	End-specific trans probes				
	(E)	Answer not known				
96.	oligo	mutagenesis, nucleotide with mutation	the	chemically	synthesized	
	(A)	Packed	(B)	Scharf		
	(0)	Cassette	(D)	Substrate		
	(E)	Answer not known				
	4					

07	/T)]		_ C	-1
97.		vector pRK404 is a derivative		unio con con con con con con con con con co
	(A)	PRK 230		PRK 262
	(C)	PRK 2	(D)	PRK 320
	(E)	Answer not known		
21 30				
98.	The	replaced portion of λ DNA is k	now	
	(A)	Clear plaques	(B)	Stuffer region
	(C)	Temperate phage	(D)	CO_S region
	(E)	Answer not known		
99.	The	vector cloning technique is call	.ed	
	(A)	Gene therapy	(B)	Gene cloning
	(C)	Plasmids	(D)	Genetics
	(E)	Answer not known		
100.		ch one of the following is INCO	ORRI	ECT with respect to "In Situ
	(1.00)	ridization (ISH)?		
	(A)	ISH is used to locate specific a		s in chromosomes
	(B)	ISH is used to map chromosom		
	(C)	ISH is used in the diagnosis of		
	(D)	ISH does not help studying tr	anslo	ocations
	(E)	Answer not known		
101.		process of treating a genetic with a new, functional gene is		
	(A)	Gene targeting	(B)	Gene therapy
	(C)	Insertion	(D)	Recombination
	(E)	Answer not known		
471-B	io-Te	chnology 28		

102.		ch one of the following methocal		
	(A)	Chromosome joining	(B)	Chromosome duplication
	(e)	Chromosome walking	(D)	Chromosome gaining
	(E)	Answer not known		
103.		quid chromatography, which of ficantly affect the resolution be		The state of the s
	(A)	Mobile phase viscosity	(B)	Detector wavelength
	ses	Column length	(D)	Sample Injection volume
	(E)	Answer not known		
104.		finity chromatography, how is arget molecule and the stations		The state of the s
	(A)	By hydrophobic interactions		
	(B)	By Vander waals forces		
	(C)	By covalent Bonding		
	D	By specific biological interaction	ons	
	(E)	Answer not known		
105.		ffinity chromatography fractioned by using	onat	ion of pure T cells can be
	(i)	Heparin Agarose		
	(ii)	5' - ADP - Sepharose		
	(iii)	Lectin - Sepharose		
	(A)	(i) only	481	(iii) only
	8 5	All the above	(D)	None of the above
		LALL DELO COOTO		NOUE OF THE ADOVE
	(C) (E)	Answer not known	(-)	None of the above

106.	Function	of β	-mercaptoethanol	in	SDS-PAGE is
------	----------	------------	------------------	----	-------------

- (A) To give negative charges to aminoacids in proteins
- (B) For the oxidation of disulphide bonds in the protein
- (C) For breaking hydrogen bonds in the proteins
- For the reduction of disulphide bonds in the proteins
- (E) Answer not known

107. The role of the enzyme - substrate reaction in ELISA is

- (A) To prevent antibody binding
- (B) To degrade the antigen
- (C) To immobilize the antigen
- To release light or colour, indicating the presence of the target molecule
- (E) Answer not known

108. Microscopes that utilize light interference for enhanced contrast and visualization of specimens include

- (1) Dark field microscope
- (2) Phase contrast microscope
- (3) Differential interference contrast microscope
- (A) (1) and (2)

(B) (1) and (3)

(2) and (3)

(D) (1), (2) and (3)

(E) Answer not known

- 109. The type of lens used in optical correction for chromatic aberration is
 - (A) Aplanatic

(B) Semi Apochromatic

(Apochromatic

(D) Semi Aplanatic

- (E) Answer not known
- 110. Assertion [A]: Phase contrast microscopy is best suited for live unstained specimens.

Reason [R]:

Phase contrast microscopy enhances contrast by converting phase differences into refractive intensity differences.

- (A) [A] is false but [R] is true
- (B) Both [A] and [R] are false
- Both [A] and [R] are true and [R] is the correct reason for [A]
 - (D) [A] is true but [R] is not the correct explanation of [A]
- (E) Answer not known
- 111. Degree of scattering in transmission electron microscope is the function of
 - (A) Wavelength of electron beam used
 - (B) Number of atoms that lie in the electron path
 - Number and mass of atoms that lie in the electron path
 - (D) Mass of atoms that lie in the electron path
 - (E) Answer not known

- 112. The separation of labeled DNA molecules is carried out by which method?
 - (A) CsCl gradient centrifugation
 - (B) Isopycnic centrifugation
 - (C) Rate-zonal centrifugation
 - (D) Sucrose gradient centrifugation
 - (E) Answer not known
- 113. The role of primers in PCR is
 - (A) To synthesize RNA
 - To provide a starting point for DNA synthesis
 - (C) To cut the DNA
 - (D) To heat the DNA
 - (E) Answer not known
- 114. The polymerase utilized for PCR is extracted from
 - (A) Haemophilus influenzae
 - Thermus aquaticus
 - (C) Escherichia coli
 - (D) Saccharomyces cerevisiae
 - (E) Answer not known
- 115. The primers used in the PCR are
 - (A) Single stranded RNA oligo nucleotide
 - Single stranded DNA oligo nucleotide
 - (C) Double stranded RNA oligo nucleotide
 - (D) Double stranded DNA oligo nucleotide
 - (E) Answer not known

- 116. Identification of coregulated genes in a microarray experiment helps in analyzing the
 (A) Poly A site
 (B) Promoter site
 (C) Poly T site
 (D) Intergenic Regions
 (E) Answer not known
- 117. Method used to detect CpG islands in genomic DNA
 - (A) Asymmetric PCR
 - (B) Thermal Asymmetric Interlaced PCR (TAIL-PCR)
 - (C) Inter Sequence Specific PCR (ISSR)
 - (MSP) Methylation Specific PCR (MSP)
 - (E) Answer not known
- 118. The technique used to identify the biochemical pathway by introducing radioactive precursors into the biological system is called as
 - (A) Radio Immuno Assay
 - (B) Radioactive Tracer Technique
 - (C) Radio carbon Tracer Technique
 - (D) Radio hydrogen Tracer Technique
 - (E) Answer not known
- 119. How can the resolution of the collimator be increased?
 - (A) By reducing the separation between the metal plates
 - (B) By increasing the separation between the metal plates
 - (C) By reducing the number of metal plates
 - (D) By decreasing the number of metal plates
 - (E) Answer not known

	T			200
120.	Reverse	osmo	SIS	18

- (1) Also known as hyper filteration
- (2) Involves semi permeable membrane
- (3) The driving force is osmotic pressure difference between the two sides
- (A) (1) and (2)

(B) (1) and (3)

(C) (2) and (3)

(D) (1), (2), (3)

(E) Answer not known

121. Which of the following shift leads to the decreased intensity of absorption?

(A) Hypochromic

(B) Hyperchromic

(C) Hypsochromic

(D) Bathochromic

(E) Answer not known

122. Proteins and Nucleic acids absorb UV maximally at

(A) 220 nm and 440 nm

(B) 280 nm and 260 nm

(C) 210 nm and 220 nm

(D) 420 nm and 440 nm

(E) Answer not known

123. Choose the correct answer

Which is suitable pH for maintaining cell culture media?

(A) pH - 5 to 7.5

(B) pH - 8 to 8.2

(C) pH - 6 to 7.1

(b) pH - 7 to 7.4

(E) Answer not known

124.	Choo	ose the right ans	swer among the	typ	es		
		Which of the following statements are true about crop trait(s) and he Inheritance used in plant tissue culture Engineering?					
	(A)	Maize –	Maternally inh	ierit	ed		
,	(B)	Tobacco -	Transmission	thro	ugh Vegetative propagation		
	(C)	Potato –	Sexual Transn	nissi	on		
	(D)	Sugarcane –	Sexual Transn	nissi	on		
	(E)	Answer not kn	iown				
125.	Whi	ch enzymes are	primarily used	for t	issue culture?		
	(A)	Trypsin		(B)	Pronase		
100	405	Trypsin and pr	ronase	(D)	Mucase		
•	(E)	Answer not kn					
126.		n the following e scale cultivation		is ı	used of immobilized cells for		
	(A)	Bioreactors		(B)	Metabolites		
	(C)	Colchicine		(D)	Asynchronous		
	(E)	Answer not kn	iown				
127.					thin an open matrix through he cell growth is called		
	(Λ)	Immobilized co	ulture method				
	(B)	Immurement of	culture method				
	(0)	Entrapment cu	ulture method				
	(D)	Primary cultur	re method				

Answer not known

(E)

128.		sider the f es/cells by					the	growth	pattern	of
,	(A)	Absence o	f cell-	cell and ce	ell-matri	ix inte	eract	ion		
	(B)	Appearan	ce of 3	BD archite	ecture					
	(C)	Balanced	hormo	onal and r	nutrition	al env	viron	ment		
	(D)	Substrate	does	not affect	cell prol	iferat	ion a	nd morp	ohology	
	(E)	Answer no	ot kno	wn						
129.	Choo	se the righ	ıt mat	ches amoi	ng type					
	(1)	1903	-	Jolly stu	udied be	ehavio	our o	f anima	al tissue i	n
	(2)	1907	_	Ross Ha	rrison cu	ılture	d fro	g embry	0	
	(3)	1910	-	Alexis C	arrel cul	ltured	chic	k embry	o tissue	
	(4)	1914	-	John e enhance	-		in	virus	cultivatio	n
	(A)	(1) and (3)) are c	orrect	(B)) (2) a	and (3) are co	rrect	
	(1) and (2) are correct				(D)) (3) ε	and (4) are co	rrect	
(E) Answer not known										
130.	Choo	se the corr	ect an	swer						
	Whic	ch animal n	nethod	d used to	create so	omatio	cell	nuclear	transfer	
	(A)	Tissue culture method			(B)) Tiss	ue ei	ngineeri	ng	
	(0)	Dolly the	sheep		(D) Doll	y the	goat		
	(E)	Answer no	ot kno	wn						

131. Which	1700	ounde	er of stem cell technology in British Columbia,
(A)	Thomson an	id Gea	rhart, 1998
(B)	Allen Eaves	, 1993	
(C)	J.A. Thomso	on, 199	98
(D)	George Koh	ler	
(E)	Answer not	knowi	n
132. Choo	se the right a	answe	\mathbf{r}
Which biolo	177 <u>2</u> 1	the fo	ollowing was the most suitable for stem cell
(A)	HSCs	_	Nerve cells
(B)	NSCs	_	Blood cells
<i>(e)</i>	SSCs	9 <u></u>	Epidermal stem cells
(D)	MSCs		Paneth cell
(E)	Answer not	knowi	n
-	otent stem nguishes from		have the property of self renewal that stem cells
(A)	Red blood ce	ells	(B) White blood cells
(C)	Platelets		(D) Muscle stem cells
(E)	Answer not	knowi	n

104.	Ma		e follo	100	ype	
	(a)		ards a ister	nd	1.	First IVF baby
	(b)	Loui	se Bro	wn	2.	Embryonic cell from inner cell mass
	(c)		ns and fman		3.	Clonal embryonal carcinoma
	(d)	Andrews		4.	First human egg invitro	
		(a)	(b)	(c)	(d)	
	(A)	2	3	4	1	
	(B)	4	3	2	1	
	(0)	4	1	2	3	
	(D)	3	1	4	2	

- 135. The genes responsible for reprogramming human skin cells to become induced Pluripotent (iPs) cells,
 - (A) c-Myc, Sox-2, Sox-3
- (B) Oct 3/4, Klf 4, als3
- Sox 2, Oct 4, NANOG
- (D) Oct 2, b-Myc, Sox-2
- (E) Answer not known
- 136. The cell cycle is intrinsically controlled by the protein
 - (A) Protease

(B) Kinase

(C) Proteinase

- (D) Polymerase
- (E) Answer not known

137.	Whic	ch of the following statements a	are t	rue about tiger pugmark?							
	(i)	Front pugmarks are always u injuries	ıniqu	ue as they are susceptible for							
•	(ii)	Both male and female tigers produce identical pugmarks									
	(iii)	Paw of a tiger consist of a pad	and	three toes							
	(11)	(i) only	(B)	(ii) and (iii) only							
	(C)	(i) and (ii) only	(D)	(iii) only							
	(E)	Answer not known									
138.	Arra	nge the following in chronologi	cal o	rder							
	(1)	Biological Diversity Act									
	(2)	Scheduled Tribes Act									
	(3)	Indian Forest Act									
	(4)	Wildlife Protection Act									
,	(A)	(3), (4), (1), (2)	(B)	(2), (3), (4), (1)							
	(C)	(4), (3), (2), (1)	(D)	(1), (3), (4), (2)							
	(E)	Answer not known									
139.	Which wildl	th among the following is not a ife?	an In	n-situ conservation method of							
	(A)	Conservation reserves	(B)	Zoological gardens							
	(C)	Wildlife sanctuary	(D)	National park							

(E)

Answer not known

140.	Selec	et the cor	rect ma	tches from the following				
	(1)	WWF	× —	World Wildlife Fund				
	(2)	RDB	_	Red Data Book				
	(3)	IBWL	-	International Board of Wildlife Legislation				
	(4)	NWAP	12 <u>-13</u>	National Wildlife Act for Protection				
	(Λ)	(1) and (3) are o	correct (B) (2) and (3) are correct				
	(C)	Only (4)	is corre	ect (D) (1) and (2) are correct				
	(E)	Answer	not kno	own				
141.		ive camer		s for the wildlife census worked based on w				

- vhich of the following mechanism?
 - Pressure pads installed on the ground (A)
 - (B) Infrared light beams installed
 - Two sensors installed side by side (C)
 - Continuous video was captured (D)
 - (E)Answer not known
- 142. Waterhole census method is suitable for which of the following wildlife habitat?
 - (A) Area with uniform distribution of wildlife
 - (B) Arid and Semi arid wilderness region
 - Fresh and marine water habitats (C)
 - Area with an accumulated count of wildlife (D)
 - Answer not known (E)

143.		The waggle dance of honey bees is otherwise called as "Figure of Eight dance" because of the following which reason?										
	(A)	Eight worker bees involved in the act										
	(B)	Bees perform this at 8 meter distance from flowers										
	(C) Flying pattern looks like figure 8											
	(D)	Bees perform this 8 times before reaching a flower										
	(E)	Answer not known										
144.	Whi	Which among the following is not a type of hormone?										
	(A)	Glyco hormones	(B) Amine hormone									
	(C)	Peptide hormone	(D) Steroid hormone									
	(E)	Answer not known										
145.	Which of the following is not a grazing pattern of domestic animals in forest?											
	(A)	Migratory grazing	(B) Penning and stall feeding									
	(0)	Restricted grazing	(D) Day grazing									
	(E)	Answer not known										
146.	Select the correct pair of courtship displays of the following animals											
	(1)	Gray lings - Wavi	ng pattern of wings									
	(2)	Spiders - Smell	of the scent produced									
	(3)	Elephants – Tactil	e signals									
	(4)	Lizards – Fight	and evoke									
	(A)	(1) and (2) are correct	(B) (2) and (3) are correct									
	(C)	(1) and (4) are correct	(2) (3) and (4) are correct									
	(E)	Answer not known										

147.	Choo	se the correct matches	s amo	ng the following						
	(1)	Mangrove swamps	-	Marine, brackish water						
	(2)	Flood land	_	Rivers						
	(3)	Marsh	_	Rain water						
	(4)	Bog	_	Underground diffusion water						
	(A)	(1), (2) and (3) are con	rrect	(B) (1), (2) and (4) are correct						
	(C)	(1) and (2) are correct	t	(D) (2), (3) and (4) are correct						
	(E)	Answer not known								
148.	3. Sponges (phylum porifera) have a primitive cellular organization and lack tissue structures or body symmetry. Why?									
(A) For performing asexual reproduction										
(B) To change the nerve system as required										
(C) To develop a digestive tract as required										
	(B)	To regulate the water flow through the body to acquire food								
	(E)	Answer not known								
149.	Which of the following is not a characteristic of Phylum Arthropoda?									
	(i)	They are bilaterally s	ymme	etrical						
	(ii)	The body is covered w	vith a	exoskeleton						
	(iii)	Respiratory gas excha	ange t	akes place through parapodia						
	(A)	(i) only		(B) (iii) only						
	(C)	(i) and (ii) only		(D) (ii) and (iii) only						
	(E)	Answer not known								

150.	Mat	tch th	e follo	wing c	ompor	nents of ecosystem with their appropriate					
	pairs										
	(a)	Auto	trophs		1.	Feed on dead organisms					
	(b)	Hete	rotrop	hs	2.	Feed on a live host organism					
	(c)	Para	sites		3.	Ingestion and digestion of food					
	(d)	Sapr	otroph	s	4.	Produce its own food					
			4.		(1)						
		(a)	(b)	(c)	(d)						
	(A)	4	1	2	3						
	(B)	4	3	2	1						
	(C)	2	3	4	1						
	(D)	2	1	4	3						
	(E)	Ans	swer no	ot knov	vn						
151.	The	powe	er of a	statist	ical te	est described by the following statement?					
	(4)	The	e proba	bility	of corr	recting rejecting a true null hypothesis					

- (B) The probability of correcting rejecting a true null hypothesis when it
 - (B) The probability of failing to reject the null hypothesis when it is false
 - (C) The probability of a Type I error
 - (D) The probability of a Type II error
 - (E) Answer not known
- 152. If P(A) = 0.5, P(B) = 0.6, and $P(A \cap B) = 0.3$, calculate $P(A \cup B)$.

0.8

(B) 1.0

(C) 0.6

(D) 0.9

(E) Answer not known

153. Assertion [A]: The multiplication rule of probability is used when events are independent.

Reason [R]: The multiplication rule for dependent events involves conditional probability

(A) Both [A] and [R] are true and [R] is the correct explanation for [A]

- (B) Both [A] and [R] are true but [R] is not correct reason for [A]
- (C) [A] is true and [R] false
- (D) [A] is false and [R] true
- (E) Answer not known
- 154. Bernoulli's theorem is applicable to which type of trials?
 - (A) Trials with continuous outcomes
 - (B) Independent trials with two outcomes
 - (C) Trials with dependent outcomes
 - (D) Trials with more than two mutually exclusive outcomes
 - (E) Answer not known
- 155. The Non comparative scaling techniques are
 - (i) Itemized rating
 - (ii) Verbal frequency scale
 - (iii) Graphic rating
 - (A) (ii) only

(B) (i) and (iii)

All the above

(D) None of the above

(E) Answer not known

(i) It is positively skewed								
(ii) It is symmetric and bell shaped								
(iii) It has lighter tails than the normal distribution								
(iv)	Its mean is always posit	ive						
(A)	(ii) only	(B)	(i) and (ii)					
(C)	(i) and (iv)	(D)	(i) and (iii)					
(E)	Answer not known							

- - Failing to reject a false null hypothesis
 - Rejecting a true null hypothesis (B)
 - Failing to reject a true null hypothesis (C)
 - Rejecting a false alternative hypothesis (D)
 - Answer not known (E)

- 158. Match the following with their correct definitions.
 - (a) Standard Error
- 1. Describes the spread of the sample mean
- (b) Central limit theorem
- 2. States that large sample sizes, the distribution of the sample mean will approach a normal distribution
- (c) Population Distribution
- 3. The distribution from which samples are drawn
- (d) Sampling Distribution
- 4. The distribution of values of a statistics computed from all possible samples
- (a) (b) (c) (d) (A) 2 1 3 4 (B) 4 3 2 1 (0) 1 2 3 4 4 3 2 (D) 1
- (E) Answer not known
- 159. Which of the following is the limitation of MS Excel in statistical analysis
 - (A) Data entry is not possible
 - (B) Lack of regressive tool
 - (C) Limited reproducibility
 - (D) No charting capabilities
 - (E) Answer not known

160.	Mat	tch the	Excel	function	on w	ith its correc	et use
		Funct	ion			Purpose	
	(a)	Conca	tenate)	1.	Counts only	y numbers
	(b)	Count	,		2.	Joints text	strings
	(c)	If			3.	Logical con	nparison
		(a)	(b)	(c)			
	45	• (a)	1	3			
	(B)		2				
	(C)			1			
	(D)		1	2			
	(E)	Ansv	ver no	t know:	n		
161.	In S	SPSS, v	vhich	view al	lows	you to enter	and view actual data value?
	(A)	Varia	able vi	.ew		(B)	Output view
	(C)	Synt	ax vie	W		DI	Data view
	(E)	Ansv	ver no	t know	n		
169	Rofe	aranca	eactio	n of a	thos	ic or roccor	ch report should not contain
102.	the			- part.	uics	is of fescar	ch report should not contain
	(A)		ograpl			1950	Conclusion
	(C)		2	s (if any	(7)	(D)	Index or glossary (if any)
	(E)			t know		(D)	mack of glossary (if any)
	(12)	MIISV	ver no	KIIOW	11		
163.		oubMed linical				llowing abbr	reviation is used for "Journal
	(1)	J.Cli	n. Inv	est		(B)	J.Clin. Investig
	(C)	Clin.	Invest	J.		(D)	J.C. Invest
	(E)	Answ	ver no	know	n		
						47	471-Bio-Technology
							[Turn over

164.	Which of the following	is	secondary	purpose	of a	review	of literatur	e
	in a Research Study?							

- (A) To identify gap in existing research
- To establish a theoretical framework for research
 - (C) To verify the findings of previous study
 - (D) To present researcher's personal opinion
 - (E) Answer not known

165. A statistical study of relationship between two or more variables is

(A) Correlation

(B) Probability

(C) Distribution

- (D) Inference
- (E) Answer not known

166. Calculate the mean from the following table.

Score	Frequencies
0-10	2
10-20	4
20-30	12
30-40	21
40-50	6
50-60	3
60-70	2
	200

(A) 34.2

(B) 33.4

(C) 32.6

- (D) 35.6
- (E) Answer not known

167.		width of a class interval in a frequency distribution oximately equal to the range of data divided by the	will	be
	(A)	Highest value of the data set		
	(B)	Lowest value of the data set		
	ser	Number of class intervals		

- (D) Average of the data set
- (E) Answer not known
- 168. Positional average is
 - (A) Mean

(B) Median

(C) Harmonic mean

- (D) Geometric mean
- (E) Answer not known
- 169. Which of the following will cause the standard deviation of a dataset to decrease?
 - (A) Increasing the spread of the data
 - Decreasing the spread of the data
 - (C) Adding outliers to the dataset
 - (D) Doubling all datasets
 - (E) Answer not known
- 170. If the dataset contain an even number of values, the median is the
 - (A) Middle of the array
 - (B) First of the array
 - Average of the middle items
 - (D) Average of all the items
 - (E) Answer not known

171.	One Hard	of the ly-Weinberg		statement	is	truly	repre	esenting				
	(A) (B) (C) (D) (E)	Equilibriun	n reaches in rium allele pove	ts genotype to one generat e and gene	ion of	random		1070X				
172. In a sample from a population, there were 65 individu BB genotype, 30 individuals with Bb genotype and 15 individuals with bb genotype. The frequency of the 6 allele is												
	(A)	0.59		(B)	0.27							
	(C)	0.41		(D)	0.73							
	(E)	Answer not	known									
173.	One of the following is used as marker for Genetic Linkage Analysis.											
	(A)	Alleles		(B)	SNP							
	(C)	Trait		(D)	All of t	the abov	re					
	(E)	Answer not	known									
174.	The site of origin of DNA replication is rich in											
	(A)	AT		(B)	GC							
	(C)	AA		(D) '	TT							
	(E)	Answer not	known									

175.	RecA	protein involved in	
	(A)	SOS Response	(B) Direct Repair
	(0)	Recombination Repair	(D) Mismatch Repair
	(E)	Answer not known	
176.		hybrid is crossed with a double two points it is called	e receive parent leads to crossing
	(A)	Crossing over	
	(B)	Two point test crosses	
•	(C)	Hybrid crosses	
	(D)	Three point test crosses	
	(E)	Answer not known	
177.		structure of DNA from B-form in Eukaryotic gene regulation	to Z-form by the modification of process is
	(4)	Cytosine Methylation	
	(B)	Histone Modification	
	(C)	Chromatin confirmation change	ge
	(D)	None of these	
	(E)	Answer not known	
178.	Natu	rally occurring mutagens produ	uced by fungi is
	(A)	Enterotoxin	(B) Aflatoxin B ₁
	(C)	Shigo toxin	(D) Chemo toxin
	(E)	Answer not known	& #E

179.	Assertion [A]: Plasmid used as a vector in cloning process.					
	Rea	son [R	8	ts pos esistar		ngle origin of replication and antibiotic
	(A)	[A] a	nd [R] is cor	rect	[R] is the correct reason for [A]
	(B)	[R] is	s the r	ot cori	rect r	reason for [A]
	(C) [A] and [R] is not correct					
	(D) [A] false [R] correct					
	(E)	Ansv	ver no	t know	'n	
180.	Alzl nan		's dise	ease pa	atien	ts were found to have a specific protein
	(A)	Amy	loid			(B) p^{53}
	(C) Superoxide dismutase (D) Cftr protein					
	(E) Answer not known					
181.	Mat	ch the	follov	ving ab	out t	the recombination process
		Lytic				Sex Pilus
	(b)	Comp	etent	Cell	2.	Conjugation
	(c) Hfr Strain 3.		3.	Transformation		
	(d)	F Plas	smid		4.	Transduction
		(a)	(b)	(c)	(d)	9
	(A)	3	4	2	1	
	(B)	4	3	2	1	
	(C)	4	3	1	2	
	(D)	4	1	2	3	
	(E)	Ansv	ver no	t know	n	

182.		gene which deals about nunities is called	metabolic potential of microbial
	(A)	Functional genomic	(B) Proteomics
	(C)	System biology	(D) Metagenomics
	(E)	Answer not known	
183.	An A	$\mathrm{T} o \mathrm{GC}$ mutation is an exam	ple of
	(A)	Point mutation, transition	
	(B)	Point mutation, transversion	
	(C)	Frame-shift mutation, inserti	ion
	(D)	Frame shift mutation, deletic	on
	(E)	Answer not known	
184.	Stop	codons are read by some speci	ific factors, they are called as
	(A)	Reducing factors	(B) Reading factors
	(0)	Releasing factors	(D) Risk factors
	(E)	Answer not known	
185.	The	fluctuation in gene frequency i	s
	(A)	Gene fluctuation	(B) Gene flow
	(C)	Genetic drift	(D) Gene aberration
	(E)	Answer not known	
186.			anges before it is liberated as an
	activ	e sperm. These changes are ki	nown as
,	(A)	Spermatogenesis	(B) Spermiolysis
	(C)	Spermiogenesis	(D) Sperm maturation
	(E)	Answer not known	
		53	471 Rio Tachnology

187.	Whic	ch of the following suggestion are true about Berrill (1971).							
	(A)	Activation of egg is by tubule material							
	(B)	Activation of egg is done by Peri acrosomal material							
	(C)	Activation of egg is done by Adenyl cyclase							
	(D)	Activation of egg is done by amino acid							
	(E)	Answer not known							
188.		cells destined to become the embryo proper in a mamma							
	(A)	Trophoblast (B) Cells of Rauber							
	(e)	Inner cell mass (D) Cellular capsule							
	(E)	Answer not known							
189.		ch embryo is most difficult to map?							
	(A)	Chick embryo Mammalian embryo							
	(C)	Birds embryo (D) Reptiles embryo							
	(E)	Answer not known							
190.	Corre	ectly order events of fertilization							
	1.	Regulation of sperm entry into the egg							
	2.	Fusion of genetic material from the two gametes							
	3.	Contact and recognition between sperm and egg							
	4.	Activation of egg metabolism to start development							
	(A)	1, 3, 4, 2 (B) 3, 1, 2, 4							
	(C)	3, 1, 4, 2 (D) 1, 3, 2, 4							
	(E)	Answer not known							

191.	. Mineral required for the alkalinization of the egg, activates egg metabolism, protein synthesis and DNA synthesis is			
	(A)	Zn^{2+}	(B)	K^{2+}
	(0)	Ca^{2+}	(D)	$ m K^{2+}$ $ m Mg^{2+}$
	(E)	Answer not known		
192.	In an	n amphibian, embryo containir	ng 16	3-64 cells is commonly called
	(A)	Gastrula	(B)	Blastula
	(0)	Morula	(D)	Blastopore
	(E)	Answer not known		
193.	The j	protein connexin participated in	'n	
	(A)	Active transport		
	(B)	Gap junction		
	(C)	Synoptic transmission		
	(D)	Secondary active transport		
	(E)	Answer not known		
194.	Flow	cytometry works in this order	in bi	ophysical technology?
	1.	Protein engineering		
	2.	Cell sorting		
	3.	Cell counting		
	4.	Biomarker detection		
	(A)	3, 2, 4, 1	(B)	4, 2, 3, 1
	(C)	3, 4, 2, 1	(D)	1, 2, 3, 4
	(E)	Answer not known		

195.	Tus	protein is important for		
	(A)	Initiation	(B)	Elongation
	ser.	Termination	(D)	Mutation
	(E)	Answer not known		
196.	Whic	ch one is the complete cell cycle	?	
	(A)	D, G_1, G_2, M, S	(B)	S, M, D, G_1, G_2
	(C)	G_2 , G_1 , D , M , S	DY	G_1, S, G_2, M, D
	(E)	Answer not known		
197.	confi	hey and chase studied the exr rming the DNA as the genetic NA and protein by		
	(A)	DNA labelled with $^{32}\mathrm{P}$		
	(B)	Protein labelled with $^{35}{ m S}$		
	10)	Both (A) and (B)		
	(D)	None of these		
	(E)	Answer not known		
198.		organelles which is responsible energy to be used by cell	e for	oxidation of food substances
	(A)	Centrioles	(B)	Cytoplasm
	10	Mitochondria	(D)	Lysosome

(E) Answer not known

199.	Intervening sequences in Eukaryotic mRNA are cleaved out of the transcript by a controlled mechanism, named as				
	(4)	Splicing	(B)	Poly A Tailing	
	(C)	Capping	(D)	Curing	
	(E)	Answer not known			
200.	During proteolytic cleavage polymerase - I produces large and shor fragment. Large fragment has 5' → 3' polymerase and 3' → 8 exonuclease activity. Name the fragment.				
	(A)	Klenow Fragment	(B)	Coding strand	

(D) Template strand

Non coding strand

Answer not known

(C)

(E)