COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POST)

COMPUTER BASED TEST

DATE OF EXAM: 22.07.2025 FN

PAPER - II - CHEMICAL AND MECHANICAL ENGINEERING

(DEGREE STANDARD) (CODE: 528)

- 1. The primary difference between Occupational Safety and Health Administration (OSHA) and American National Standards Institute (ANSI) is
 - OSHA's power to enforce regulations, but ANSI offers guidelines that companies can adopt on a voluntary basis
 - (B) OSHA offers guidelines that companies can adopt on a voluntary basis, but ANSI's power to enforce regulations
 - (C) OSHA offers guidelines according to the working environments unlike ANSI
 - (D) ANSI offers guidelines according to the working environments and has power to enforce its guidelines unlike OSHA
 - (E) Answer not known
- 2. Which of the following statements about FMS implementation are incorrect?
 - (I) FMS can be rapidly deployed in any manufacturing environment regardless of existing intra structure.
 - (II) FMS enhances adaptability to moderate design changes without substantial downtime.
 - (III) FMS is ideally suited for high product variety with very low production volume per varient.
 - (IV) The initial capital investment and integration complexity of FMS often act as barriers to adoption.
 - (A) (III) only

(B) (IV) only

(C) (II) only

(I) only

3.	OSI	SHA stands for	
	(A)	Occupational Safety for Health Administration	n
	(B)	Occupational Safety and Health Administration	on
	(C)	4	
	(D)	Occupational Safety and Health Awareness	
	(E)	2) Answer not known	
4.	Step	teps involved in method study	
	(A)	Examine, record, select, develop, install, define	e, maintain
	(B)		
	(C)		
	(D)) Select, develop, define, install, maintain, exam	nine, record
	(E)	Answer not known	
5.	asse	ssuming that the total observed time for a seembling an electric switch is 1.00 min. if the ratice normal time.	
	(A)	(B) 1.20 min	
	(C)	(D) 0.5 min	
	(E)	Answer not known	
6.		PERT, which of the following is not related to timated time?	determining the

(C)

(E)

Most unlikely time

Answer not known

Pessimistic time

(B) Optimistic time

(D) Most likely time

- 7. The main difference between PERT and CPM in
 - (A) CPM uses probabilistic time, PERT deals
 - CPM deals with cost, PERT deals with time
 - (C) CPM deals with cost, PERT uses deterministic time
 - (D) CPM is for research, PERT is used for regular jobs
 - (E) Answer not known
- 8. Which of the following best describes the main reason why isoparametric elements converse to the exact solution as the mesh is refined?
 - (A) The elements become more rigid as the mesh density increases
 - (B) The Jacobian matrix becomes close to the identity matrix as the mesh is refined
 - (C) The number of degrees of freedom increases, leading to better approximation of the solution
 - The shape functions used in isoparametric elements ensure exact representation of displacement gradients at nodes
 - (E) Answer not known
- 9. Which of the following is not the right term associated with FEA?
 - (A) Element

(B) Node

(C) Degree of freedom

Degree of reaction

- 10. While analyzing the spoke network of a bicycle wheel using FEA, the use of truss elements instead of bar elements would be more appropriate, because:
 - Spokes transmit only axial forces without bending
 - (B) Spokes require both shear and moment resistance at their ends
 - (C) Truss formulation adds torsional stiffness to the spoke model
 - (D) Bar elements allow easier rotational constraints at the hub
 - (E)Answer not known
- In FEA, line element is a 11.
 - (B) Two dimensional problem
 - Three dimensional problem (C)
- (D) Non linear problem
- (E) Answer not known
- 12. In FEA, the element stiffness matrix $[K] = [B]^T[D][B](A)(t)$ where matrix [B] referred as
 - Strain displacement matrix
 - (B) Stress displacement matrix
 - (C) Stress-strain relation matrix
 - (D) Strain-stress relation matrix
 - Answer not known (E)

13.	Identify the wrong statements regarding the structure of the OPTIZ part coding system.							
	(I) The first five digits typically represent the form code of the							
	(II) Digits 6 to 9 in the code always refer to main shape of component							
	(III)	Secondary codes can be requirements	optimized to	suit production				
	(IV)	The system always uses a fixed 10-digit format						
	(A)	(II) and (III) only	(B) (II) and (IV) only				
	(C)	(III) and (IV) only	(D) (I) and (III) only					
	(E)	Answer not known						
14. Which of the following characteristics of a photopolymedirectly influence the dimensional accuracy of a printed SLA?				- 1				
	(I)	Polymerization shrinkage						
	(II)	Light penetration depth						
	(III)	Resin's elastic modulus						
	(IV)	Viscosity of resin at rest						
	(A)	(I) and (II) only	(B) (II) and ((III) only				

7

(C) (I), (II) and (III) only

Answer not known

(E)

(D) (III) only

- 15. Which of the following statement reflects safety standard applied in robotics?
 - ISO 10218 provides safety requirements for both industrial robots and their system
 - (B) ISO 16976 provides safety requirements for both industrial robots and their system
 - (C) ISO 12018 provides safety requirements for both industrial robots and their system
 - (D) ISO 9001 provides safety requirements for both industrial robots and their systems
 - (E) Answer not known
- 16. Which of the following factors most critically challenges the adoption of JIT in a small-scale chemical plant?
 - (A) High employee turnover
 - (B) Fluctuating international chemical prices
 - Unpredictable lead times for chemical deliveries
 - (D) Increased competition from multi-national corporations
 - (E) Answer not known

- 17. Which of the following best demonstrates FMS in action?
 - (I) A car factory using fixed assembly lines for a single model
 - (II) A furniture factory that configures CNC machines for custom design on demand
 - (III) A textile mill producing the same fabric daily
 - (IV) A bottling plant using robotic arms for repetitive capping
 - (A) (I) and (III) only

(B) (II) only

(C) (IV) only

- (D) (I) and (IV) only
- (E) Answer not known
- 18. Which of the following is CIM hardware?
 - (A) Database management system
 - (B) Flexible manufacturing system
 - (C) Network management system
 - (D) Simulation programming system
 - (E) Answer not known
- 19. The function of OOPS command in geometric modeling is

9

- (A) Enlarge (or) shrink an object
- (B) Trim the portion of entities
- (C) Mirror the images of existing object
- To retrieve objects erased inadvertently
- (E) Answer not known

20.	Batch production means					
	(A) Oldest method of production on a very small scale					
	(B)	Large scale production				
Ŧ	(0)	Two or more type of products	are manufactured in lots			
	(D)	The plant and its equipment	layout designed			
	(E)	Answer not known				
21.	the	et pulp contains 75% water. A dryer, it is found that the pu weight of the original pulp is	C			
	(A)	$116.7~\mathrm{kg}$	(B) 291.6 kg			
	(C)		(D) 155.6 kg			
	(E)	Answer not known	. ,			
22.	exhi	ontrol system is unstable if the lbits an AR exceeding unity at its 180°. This frequency is called	the frequency for which the	_		
	(A)	Crossover frequency	(B) Cross frequency			
	(C)	Loop frequency	(D) None of the above			
	(E)	Answer not known	• •			
23.	In e	extraction operation, a solve	nt with low interfacial te	nsion		

- leads to
 - Easy coalesce and rapid disengagement of phases (A)
 - Formation of stable emulsions difficult to settle
 - (C) Easy separation by gravity
 - High rate of mass transfer (D)
 - (E) Answer not known

24.		The two basic steps involved in the overall process of crystallization are ——————————————————————.						
	(A)	Solubility, crystal growth						
	(B)	Super saturation, nucleation						
	(C)	Crystal growth, super saturation						
	(D)	Nucleation, crystal growth						
	(E)	Answer not known						
25.		major limitation of electrodialysis for desalination of sea water, reverse osmosis is						
	(A)	The high pressure required for operation						
	(B)	The scaling and fouling of membranes						
	(0)	The inability to remove suspended solids and microorganisms						
	(D)	The short membrane life expectancy						
	(E)	Answer not known						
26.	Sele	ct the law associated with diffusion process from the options						
	(A)	Kick's law of diffusion						
	(B)	Kirchchoff's law of diffusion						
	(C)	Fourier's law of diffusion						
	(D)	Fick's law of diffusion						
	(E)	Answer not known						

27.	According to penetration theory, the mass transfer coefficient (K_v) varies with the ———— of molecular diffusivity (D_v) .			
	(A)	Square	(B) Square root	
	(C)	First power	(D) Two-third	
	(E)	Answer not known		
28.	Wha	t type of membrane is used in a	gas separation?	
	(1)	Porous membrane		
	(2)	Non-porous membrane		
	(3)	Dense membrane		
	(A)	Only (1)	(B) Only (2)	
	(C)	Only (3)	(D) Only (1) and (2)	
	(E)	Answer not known	4	
29.	are a	always at their bubble points	column, the liquids and vapours and dew points, respectively. So at the bottom, the lowest at the	
	(A)	Rectifier	(B) Stripping	
	(C)	Reboiler	(D) Fractionator	
	(E)	Answer not known		
30.	Lewi	s number = 1, signifies		
	(A)	Pr = Re	(B) $Pr = Sc$	

Answer not known

(C) Sc = Re

(E)

(D) Nu = Sh

31. Match Column I with Column II Column I

Column II

- (P) Reynolds Analogy
- $1. \qquad \frac{K}{C_p \rho D_{AB}}$

(Q) Lewis number

- 2. $\frac{\mu}{\rho D_{AB}}$
- (R) Schmidt number
- $3. St_H = St_D = \frac{f}{2}$
- (S) Chilton-Colburn Analogy
- $4. J_H = J_D = \frac{f}{2}$
- (P) (Q) (R) (S)
- (A) 1 2 3 4
- **(B)** 3 1 2 4
- (C) 4 3 2 1
- (D) 3 2 4 1
- (E) Answer not known
- 32. The high value of Henry's law constant means
 - (A) The gas solubility is high
 - (B) Equilibrium partial pressure is low
 - The solubility is low
 - (D) It is independent of gas solubility
 - (E) Answer not known

- 33. Find the final value of the process control system whose transfer function is given as $G(S) = \frac{(S+4)}{S(S+1)(S+2)}$
 - (A) 4

(B) 2

(C) 1

- (D) 0
- (E) Answer not known
- 34. Identify the control system in which the input has control over the output.
 - (A) Open-loop control system
 - (B) Distributed control system
 - Closed-loop control system
 - (D) Non-Distributed control system
 - (E) Answer not known
- 35. A control system is stable if
 - (A) All the roots of the characteristic equation has a negative real part
 - (B) All the roots of the characteristic equation has a positive real part
 - (C) Any root of the characteristic equation have negative real part
 - (D) Any root of the characteristic equation have positive real part
 - (E) Answer not known

- 36. The number of sign changes in the entries in the first column of Routh's array denotes
 - (A) The number of open-loop zeros in RHP
 - (B) The number of open-loop zeros in LHP
 - (C) The number of zeros the system in RHP
 - The number of roots of the characteristic polynomial in RHP (Right half of S-plane)
 - (E) Answer not known
- 37. The nature of roots for the over damped system are found to have
 - Two distinct and real poles
 - (B) Two real and equal poles
 - (C) Two complex conjugate poles
 - (D) One real and one complex pole
 - (E) Answer not known
- 38. The transfer function of a first order pure capacitive system is

$$G(S) = \frac{K_P}{S}$$

(B)
$$G(S) = \frac{\tau_P + 1}{S}$$

(C)
$$G(S) = \frac{K_P}{\tau_P S + 1}$$

(D)
$$G(S) = \frac{\tau_P S + 1}{K_P}$$

39. The Laplace transform of a transportation log of 5 seconds is

 e^{-5s}

(B) e^{5s}

(C) e^{-5}

(D) $\frac{1}{s+5}$

(E) Answer not known

40. The characteristic equation for a system is $s^3 + bs^2 + cs + 1 = 0$ what is the condition for stability of the system according to Routh's stability criterion?

 $(A) \quad bc - 1 > 0$

(B) bc - 1 < 0

(C) b > c

(D) b < c

(E) Answer not known

41. The basic raw material for glass is

(A) Gypsum

(B) Clay

(C) Lime stone

(D) Silica/Sand

(E) Answer not known

42. The chemical used for bleaching of pulp is

(A) Chlorine

- (B) Sodium chloride
- (C) Magnesium sulfate
- (D) Calcium carbonate
- (E) Answer not known

43.	3. In the polymeric chemical reaction, he molecules containing double or triple bonds or with oxo-ring compounds, are liberated and reaction is the rapid chain type is known as				
	(A)	Poly condensation reaction	(B) Addition reaction		
	(C)	Condensation reaction	(D) Chain polymerisation		
	(E)	Answer not known			
44.		ous types of stable greases ar	e produced with working range		
	(A)	−30°C to 150°C	(B) −75°C to 290°C		
	(C)	−75°C to 260°C	(D) -75°C to 200°C		
	(E)	Answer not known			
45.	Fibre	e mould making process mould	release agent is		
	(A)	Polyvinyl alcohol	(B) Glass wool		
	(C)	Soda lime	(D) Sodium sulphate		
	(E)	Answer not known			
46.		ch is used for pulp digestion rindustry?	of water treatment in pulp and		
	(A)	Soda Ash	(B) Calcium carbonate		
	(C)	CaO	(D) Calcium sulphide		
	(E)	Answer not known	*		

- 47. Examples of semi drying and non-drying oils are
 - (A) Linseed castor oil and butter fat
 - (B) Untreated castor oil and coconut oil
 - (C) Dehydrated castor oil and Herring oil
 - (D) Salmon and cod liver oil
 - (E) Answer not known
- 48. In Recycle process overall conversion =

- (B) Overall conversion = $\frac{Input Output}{Input}$
- (C) Overall conversion = Reactant Product/Product
- (D) Overall conversion = Total product Total reactant/product
- (E) Answer not known
- 49. Purge = _____.

Purge =
$$\frac{\text{Feed rate} \times \text{mole fraction of inerts in the feed}}{\text{mole fraction of inerts in the recycle}}$$

- (B) Purge = Feed ratio/product ratio
- (C) Purge = $F_0 + F_1/F_0$
- (D) Purge = F_0xF/F_1xF_1
- (E) Answer not known

50.	press	ulate relative saturation of vap sure of acetone mixture is 18 one is 26.36.		
	(A)	50. 06%	(B)	56.9%
	, ,	49.01%	(D)	51%
		Answer not known		
51.	conta	ulate the pressure developed ained in a vessels of 0.6 m³ cap '3 K by using the ideal gas equa	pacit	ty at a constant temperature
	(A)	30 bar	(B)	40 bar
	(0)	65.54 bar	(D)	80 bar
	(E)	Answer not known		
52.	the	ndustrial Processes, the chemic valuable reactants to their t tants is minimised. This operat	max	imum. So that the loss of
	(A)	Bypassing operation	(B)	Recycling operation
	(C)	Parallel operation	(D)	Reprocessing operation
	(E)	Answer not known		
53.	vapo	Humidification operations, the our mixture recorded by the im oure, is termed as		
	(A)	Wed-bulp temperature	(B)	Absolute humidity
	(0)	Dry-bulp temperature	(D)	Percentage humidity
	(E)	Answer not known		
	8 II			

54.			-	hloride and it is
	prep	ared by mixing the two compon	ents	with catalyst and heating.
-	(A)	Saran, Vinylidene chloride		
	(B)	Spandex, Vinyacetate		
	(C)	Poly olefins, vinyl monomer		
	(D)	Vinyls and vinyl polymer		
	(E)	Answer not known		
55.	Poly	olefin fibers are usually made o	\mathbf{f}	
	(A)	Spandex		
	(B)	Vinyl chloride		
	(0)	Poly ethylene and Polypropyle	ene	
	(D)	Dynel material		
	(E)	Answer not known		
56.		work required for crushing a glogarithm of the ratio between		
	(A)	Rittinger's Law	(B)	Kick's Law
	(C)	Bonds Law	(D)	Work index
	(E)	Answer not known		
57.	susp	impellers are used for lension.	large	e scale mixing of solid/liquid
	(A)	Axial flow impellers	(B)	Radial flow impellers
	(C)	Propellers	(D)	Turbines
	(E)	Answer not known		

58.	mate		ed out by adding inexpensive or sodium silicate, which form down with them is
	(A)	Flocculation	(B) Aglomeration
	(C)	Sedimentation	(D) Settling
	(E)	Answer not known	
59.		se reduction of hard solids to gi	one of the following is used for ve relatively few fines
	(A)	Compression	(B) Impact
	(C)	Rubbing	(D) Cutting
	(E)	Answer not known	
60.	dow	is the product of the nward velocity u.	solids-concentration C and the
	(A)	Agitation flux (G _A)	(B) Mixing flux (G _m)
	(C)	Settling flux (G _s)	Transport flux (G _t)
	(E)	Answer not known	
61.		lberg's theory of moral develo	opment "Obeying rules to avoid
	(A)	Pre-conventional stage	(B) Formal operation stage
	(C)	Conventional stage	(D) Post conventional stage
	(E)	Answer not known	

62. Environmental Ethics is study of									
	(A)	Moral Environ		and	values	of	human	concerning	the
	(B)	Moral is	ssues coi	ncerni	ng the hu	ıman	being		
	(C)	Moral is	ssues coi	ncerni	ng the Ar	nima	ls		
	(D)	Moral is	ssues coi	ncerni	ng the In	dust	ry		
	(E)	Answer	not kno	wn					
63.	Peop	ole-centre	ed advoc	eacy is	s possible	e lin	k betwee	n	and
	(A)	Strateg	ic and u	nknow	n reason	÷			
	(B)	Learnin	ng and A	ctiona	ble				
	(0)	Rights	and Part	cicipat	ion				
	(D)	Trainin	g and P	ractice	es				
	(E)	Answer	not kno	wn					
64.	Valie	dity of pa	atents ri	ght is	for		_years fro	om filling.	
	(A)	10				(B)	15		
	(0)	20				(D)	5		
	(E)	Answer	not kno	own					
65.		is respo Factories			preparat	ion o	f off-site	emergency pl	an as
	(A)	Occupie	\mathbf{er}			(B)	Factory I	nspection	
	(0)	District	Collecte	or		(D)	Factory N	I anager	
	(E)	Answer	not kno	wn					

66.		's technique of house keeping, on is	g, English equivalent of the terr		
	(A)	Tidiness	(B) Orderliness		
	(C)	Cleanliness	(D) Discipline		
	(E)	Answer not known			
67.	Mat	ch Column I with Column II :			

- Column I

 (P) Asphyxiant

 (Q) Irritant

 (R) Anaesthetics

 Column II

 1. Carbon tetrachloride

 2. Carbon monoxide

 3. Arsinic

 4. Ammonia
 - (P) (Q) (R) (A) 4 1 2 (B) 2 4 1 (C) 3 2 1 (D) 4 3 2
 - (E) Answer not known

68.	Mat	ch Co	olumn I	I with	Column	II:		
		Colu	mn I					Column II
	(P)	Cooli	ing]	L.	Halogenated hydrocarbons
	(Q)	Smot	thering	5		2	2.	Foam
	(R)	Star	ving			ć	3.	Water
	(S)	Inter	ruptin	g fine	chain re	eaction 4	1.	Shut off supply of oil by closing valves
		(P)	(Q)	(R)	(S)			
	(A)	4	3	2				
	(B)	1	2	3	4			
	(e)	3	2	4	1			
	(D)	3	1	4	2			
	(E)	Ans	swer no	ot knov	vn			
69.	Identify the safety documentation systems which is implemented in industries to ensure that written instructions and guidelines are available and followed from the options given							
	(A)	SCI	BA			(1	B)	Safety harness
	(C)	BL	EVE					Work permit system
	(E)		swer no	ot knov	vn		,	
70.	_	_						nave the same feature, the ormal cells is known as
	(A)	Car	ncer			(]	B)	Fever
	(C)	Cya	anosis			(]	D)	Respiratory problems
	(E)	Ans	swer no	ot knov	vn	~		

71.	Whi	ch type of fire extinguisher is u	sed f	or flammable liquids?			
	(4)	Foam	(B)	Water jet			
	(C)	CO_2	(D)	DCP			
	(E)	Answer not known					
72.		The ratio of total contaminant in a unit volume of aquifer to the contaminant dissolved in ground water is called					
	(A)	Retardation factor	(B)	Equilibrium factor			
	(C)	Molecular diffusion	(D)	Hydrodynamic dispersion			
	(E)	Answer not known					
73.	The presence of unwanted sound is called as						
	(4)	Noise pollution	(B)	Air pollution			
	(C)	Annoyance	(D)	Chronic exposure			
	(E)	Answer not known					

- 74. Which of the following is the correct statement about control of CO₂ emission?
 - (1) Use of alternative energy sources
 - (2) Prevention of deforestation and growing of more trees
 - (3) Trapping CO₂ at source as carbonate materials by using MgO or CaO.
 - (4) Ironing of Natural water bodies like oceans.
 - (A) Only (1)
 - (B) Only (4)
 - (C) Only (2)
 - All the (1), (2), (3), (4)
 - (E) Answer not known
- 75. High COD and BOD ratio of an organic pollutant represents
 - (A) High biodegradability of the pollutant
 - Low biodegradability of the pollutant
 - (C) Presence of the oxygen for aerobic decomposition
 - (D) Presence of toxic material in pollutant
 - (E) Answer not known
- 76. Which of the following air pollution control device has maximum removal efficiency for suspended particle removal?
 - (A) Spray tower

- (B) Wet cyclonic scrubber
- (C) Dynamic precipitator
- Electrostatic precipitator
- (E) Answer not known

77.	Pathogenic bacteria, enter waste waters primarily from										
	(A)	(A) Industrial waste									
	(B) Domestic waste										
••	(C)	Both domestic waste and industry waste									
	(D)	Infiltration in sewers from the surrounding soils									
	(E)										
78.	Mat	tch th	e follov	wing:							
		List I						List II			
		Trea	tment	Units				Type of process			
	(P)	Tricl	kling fi	lter			1.	Symbiotic			
	(Q) Activated sludge process						2.	Extended aeration			
	(R) Oxidation ditch						3.	Suspended growth			
	(S) Oxidation pond						4.	Attached growth			
		(P)	(Q)	(R)	(S)						
	(A)	3	4	2	1						
	(B)	4	3	1	2						
	(C)	3	4	1	2						
	(D)	4	3	2	1	,					
	(E) Answer not known										
79.		max	2	sound	level, be	eyond w	vhic	h it is certainly regarded			

as pollutant is

(A) 20 dB (B) 80 dB

(C) 40 dB (D) 50 dB

80. Match the following:

List I

List II

Pollutants

Effects produced

(P) CO

1. Green house effect

(Q) CO_2

2. Acid rains

(R) SO_2

3. Acute toxicity

(S) NO₂

4. Ozone liberation at ground level

(P) (Q) (R) (S)

(A) 3 4 1 2

(B) 3 4 2 1

(2) 4 1 3 2

(D) 4 3 1 2

(E) Answer not known

81. The ratio of heat flow rate by convection to flow rate by conduction is known as

Nusselt number

(B) Graetz number

(C) Fourier number

(D) Peclet number

(E) Answer not known

82. Heat flow mechanism through solids is known as

(A) Convection

(B) Conduction

(C) Radation

(D) Forced convection

- 83. Graetz Number (Gz) is defined by the equation
 - (A) $\frac{K_L}{\dot{m}C_P}$

(B) $\frac{K_L \dot{m}}{C_P}$

 $\frac{\dot{m}C_P}{K_L}$

- (D) $\frac{C_P}{K_L \dot{m}}$
- (E) Answer not known
- 84. Which is the major mean of heat transfer in double pipe heat exchanger?
 - (A) Convection
 - (B) Conduction
 - (C) Radiation
 - Combined convection and conduction
 - (E) Answer not known
- 85. The ratio of actual heat transfer to maximum possible heat transfer is known as
 - Effectiveness of heat exchanger
 - (B) Number of transfer units
 - (C) Nusselts number
 - (D) LMTD
 - (E) Answer not known

86.	states that the boiling point of a given solution linear function of the boiling point of pure water at the s pressure.				
	(4)	Duhring's rule	(B)	Bernoulli's equation	
	(C)	Emissivity	, ,	Ficks law	
	(E)	Answer not known			
87.	The	economy of a multiple effect ev	vapor	ator depends on	
	(A)	Heat balance	(B)	Boiling point elevation	
	(C)	Rate of heat transfer		Capacity	
	(E)	Answer not known			
88.		the device used to measus			
	(A)	Orifice meter	(B)	Venturimeter	
	(0)	Pitot tube		Rotameter	
	(E)	Answer not known			
89.		e the type of manometer rences between the fluids	used	to measure the pressure	
	(A)	Mercury barometer	(B)	Simple manometer	
	(0)	Two-fluid manometer	(D)	Piston and spring	
	(E)	Anguan not known	a #0		

90.	Flu	id friction is an irreversible con- energy.	versi	on of mechanical energy into				
	(A)	Electrical	(B)	Heat				
	(C)	Chemical	(D)	Kinetic				
	(E)	Answer not known						
91.	The	e orifice coefficient (C_o) of orifice	e met	er varies from				
	(A)	0.58 to 0.61	(B)	0.93 to 0.98				
	(C)	0.2 to 0.3	(D)	0.02 to 0.03				
	(E)	Answer not known						
92.		Bernoulli's equation for fluid flow is derived from which set of assumptions given below						
(1) Fluid flow is frictionless and irrotational								
	(2)	Fluid flow is steady						
	(3)	Fluid flow is uniform and turb	ulent	;				
	(4)	Fluid is compressible						
	(5)	Fluid is incompressible						
	(A)	(1), (3), (4)						
	(B)	(2), (4), (5)						
	(e)	(1), (2), (5)						
	(D)	(1), (4), (5)						
	(E)	Answer not known						

93.	The num	ratio of inertial forces to elaber.	stic	forces is called
	(A)	Reynolds	(B)	Mach
	(C)	Euler	(D)	Weber
	(E)	Answer not known		
94.	dens	given temperature and press ity. If the density changes only mperature and pressure, the fl	y slig	ghtly with moderate changes
	(A)	Compressible	(B)	Incompressible
	(C)	Ideal fluid	(D)	Non ideal fluid
	(E)	Answer not known		
95.	Heln	nholtz free energy is defined as		
	wher	re, U is internal energy T is temperature S is Entropy		
	W	A = U - TS	(B)	A = U + TS
		G = H - TS	243. (65)	G = H + TS
	` /	Answer not known	(D)	
96.	300	er plant generates steam at 60 K. The actual thermal efficiend ent of the maximum possible va	cy of	f the plant if operating at 70

528-Chemical and Mechanical Engineering

(E) Answer not known

(A) 1

(0) 0.35

(B) 0.5

(D) 0.2

- The residual Gibbs Energy GR is provided by the expression 97.
 - (A) $RT \int_{0}^{P} (z) \frac{dp}{p}$ (B) $RT \int_{0}^{P} (z+1) \frac{dp}{p}$

 $RT\int_{0}^{P}(z-1)\frac{dp}{p}$

- (D) $RT \frac{dp}{p}$
- (E) Answer not known
- 98. The relation among reduced properties, P_r , T_r and V_r is also known as
 - (A) Universal gas law
- (B) Compressibility factor
- Law of corresponding states
 - (D) Cubic equation of state
- Answer not known (E)
- The ideal solution is a fluid that obeys 99.
 - (A) Lewis Randell rule
 - Gibbs-Duhem equation (B)
 - (C) Raoult's law
 - First law of thermodynamics (D)
 - (E) Answer not known
- 100. Standard Gibb's energy change of reaction ΔG^{\bullet} is related to equilibrium constant K of a reaction by the expression

33

 $RT/\ln K$ (A)

(B) $\frac{\ln K}{RT}$ (P) $-RT \ln K$

 $RT \ln K$ (C)

- (E)Answer not known

101. A three stage centrifugal pump delivers 3.6 m³ of water per minute when running at 920 rpm. Determine the specific speed. Take manometric head = 25.23 m

20

(B) 25

(C) 30 (D) 35

- (E) Answer not known
- 102. In general, for a centrifugal pump running at speed N and giving a discharge Q, the manometric head is expressible in the form:

[A, B, $C \rightarrow constants$]

(A) $H_{\text{mano}} = AN + BQ + CQ$ (B) $H_{\text{mano}} = AN^2 + BN + CQ$

 $H_{\text{mano}} = AN^2 + BNQ + CQ^2$

(D) $H_{\text{mano}} = AN^2 + BQ + CN$

- (E) Answer not known
- 103. A centrifugal pump has whirl velocity and flow velocity at exit are 11.75 m/s and 2.8 m/s respectively. Find the velocity head at exit.

8.53 m of water (A)

(B) 7.44 m of water

6.13 m of water (C)

(D) 5.27 m of water

- (E)Answer not known
- 104. The impeller of a centrifugal pump having external diameter is 500 mm and running at 1200 rpm works against a head of 48 m. The whirl velocity at the outlet is 27.83 m/s. Find the manometric efficiency.

53.86%

(B) 72.12%

(C) 68.43% (D) 66.53%

	the s	peed of the turbine under a h	ead of 20 m.				
	(A)	143.71 rpm	(P) 178.88 rpm				
	(C)	153.53 rpm	(D) 162.31 rpm				
	(E)	Answer not known					
106.	A vertical shaft Francis turbine runs at 420 rpm while the discharge is 15 m ³ /s. The velocity and pressure head at entrance of the runner are 10 m/s and 230 m respectively. The elevation above the tail race is 5 m. Calculate total head across the turbine						
	(A)	216.52 m	(B) 539.35 m				
	(C)	240.09 m	(D) 725.61 m				
	(E)	Answer not known					
107.	The	following data related to a do	uble overhang pelton unit :				
		Jet ratio = 12					
		Size of jet = 300 m	*				
	Find	the mean diameter of runner	::				
	(A)	4.2 m	(B) 3.6 m				
	(C)	5.3 m	(D) 4.8 m				
	(E)	Answer not known					
108.	In a	turbine, water flow to	akes place tangentially.				
	(A)	Kaplan turbine	(B) Francis turbine				
	(C)	Radial turbine	(D) Pelton turbine				
	(E)	Answer not known					
		35	528-Chemical and Mechanical				

105. A turbine is to operate under a head of 25 m at 200 rpm. Determine

109.	09. The Darcy – Weisbach friction factor 'f' which is a direct meas resistance to flow in pipes depends on which of the following?					
	(A) Relative roughness, velocity and viscosity					
	(B)	Relative roughness, diameter				
	(C)	Roughness height, diameter a	•			
	(D) Roughness height, diameter, velocity and kinematic viscosity					
	(E)	Answer not known				
110.		profile occurred in turbulen	t flow through a pipe.			
	(A)	Parabolic profile	(B) Square profile			
	(0)	Logarithmic profile	(D) Cubic profile			
	(E)	Answer not known				
111.	Thick incre		_ as distance from leading edge			
	(A)	Decreases				
	(B)	Increases				
	(C)	No change				
	(D)	Boundary layer thickness has	no effect on leading edge			
	(E)	Answer not known				
112.	betw	-	apart have laminar flow of oil elocity of 1.5 m/s. Calculate the			
	(A)	$0.4 \text{ m}^3\text{/s per m}$	(B) $0.1 \text{ m}^3/\text{s per m}$			
	(C)	$0.6 \text{ m}^3\text{/s per m}$	(D) $0.8 \text{ m}^3\text{/s per m}$			
	(E)	Answer not known				
			9			

113.	maxi		pipe of diameter 100 mm. The pe wall is 210 N/m ² . Find the
		–9500 N/m ² per m –6700 N/m ² per m	(B) -7500 N/m ² per m (D) -8400 N/m ² per m
	(E)	Answer not known	
114.		of gases through orifices, named the of	lozzles, gas turbine, etc., is an
	(A)	Incompressible flow	(B) Rotational flow
	(0)	Compressible flow	(D) Irrotational flow
	(E)	Answer not known	
	conti	inuity is applicable to irrotational flow only	nich is based on the principle of two – dimensional flow only (D) uniform flow only
116.		co-efficient of discharge of an urimeter.	orificemeter is that of a
	(A)	equal to	
	(B)	smaller than	
	(C)	more than	
	(D)	orificemeter does not have a c	pefficient of discharge
	(E)	Answer not known	

117.	Ifab	a body sinks in a fluid, which of the following is true?				
	(A)	Buoyant force is less than weigh	ght			
	(B)	Buoyant force is equal to weigh	ht			
	(C)	Buoyant force is greater than	weig	ht		
	(D)	Fluid density is greater than b	ody	density		
	(E)	Answer not known				
		•				
118.	If the dynamic viscosity of a fluid is 0.01 Pa.s and its density is 1000 Kg/m³, what is its kinematic viscosity?					
	(A)	$1 \times 10^{-5} \text{ m}^2\text{/s}$	(B)	$1 \times 10^{-2} \text{ m}^2\text{/s}$		
	(C)	$1 \times 10^{-3} \text{ m}^2\text{/s}$	(D)	$1 \times 10^{-4} \text{ m}^2\text{/s}$		
	(E)	Answer not known				
119.		power transmitted through smission efficiency equals	ı a	pipeline, the maximum		
	(A)	, 20%	(B)	45%		
	(0)	66.67%	(D)	71.5%		
	(E)	Answer not known				
120.	Ball	pen works on the principle of				
	(A)	Viscosity	(B)	Shear stress		

Boyle's law

Answer not known

(C)

(E)

(D) Capillary action

- 121. Which of the following forms of water will have the highest value of thermal conductivity?
 - (A) Boiling water

(B) Steam

Solid ice

- (D) Melting ice
- (E) Answer not known
- 122. Air at 20° C blows over a hot plate 50 by 75 cm maintained at 250° C. The convection heat transfer coefficient is 25 W/m² °C. Calculate the heat transfer.
 - (A) 1.156 kW

(B) 2.156 kW

(C) 3.156 kW

- (D) 4.156 kW
- (E) Answer not known
- 123. For a perfectly black body
 - (A) $\alpha = Z = 0, \rho = 1$

- (B) $\alpha = \rho = 0, Z = 1$
- (2) $\alpha = 1, \ \rho = 0, \ Z = 0$
- (D) $\alpha = \rho = Z = 0$
- (E) Answer not known
- 124. The direction of heat transfer is in accordance with
 - (A) First law of thermodynamics
 - Second law of thermodynamics
 - (C) Faraday's law
 - (D) Stefan's law
 - (E) Answer not known

- 125. A steel rectangular container having walls 16 mm thick is used to store gaseous hydrogen at elevated pressure. The molar concentrations of hydrogen in the steel at the inside and outside surfaces are $1.2\,k\,\mathrm{g}$ mole/m³ and zero respectively. Assuming the diffusion coefficient for hydrogen in steel as 0.248×10^{-12} m²/s. Calculate the molar diffusion flux for hydrogen through the steel.
 - (A) $15.6 \times 10^{-12} \ k \, \text{g mole/s.m}^2$
 - (B) $16.6 \times 10^{-12} \, k \, \text{g mole/s.m}^2$
 - (C) $17.6 \times 10^{-12} kg \text{ mole/s.m}^2$
 - $18.6 \times 10^{-12} \ kg \ mole/s.m^2$
 - (E) Answer not known
- 126. Why are baffles provided in heat exchangers?
 - (A) To reduce heat transfer rate
 - (B) To increase heat transfer rate
 - (C) To remove dirt
 - (D) To reduce vibrations
 - (E) Answer not known
- 127. The inner surface of the plane brick wall is at 50° C and the outer surface is at 25° C. Calculate the rate of heat transfer per m² of the surface area of the wall, which is 220 mm thick. The thermal conductivity of the bricks is 0.51 W/m^k
 - (A) 20.65 W/m^2

(B) 32.75 W/m²

(C) 47.62 W/m^2

- (P) 57.95 W/m²
- (E) Answer not known

128.	. The basic law of heat conduction is called					
	(A)	Newton's law of cooling	(B) Fourier's law			
	(C)	Kirchhoff's law	(D) Stefan's law			
	(E)	Answer not known				
129.	If the	e rate of heat transfer is variab	le, it is known as			
	(A)	Steady state heat transfer				
	(B)	Un-steady state heat transfer				
	(C)	Uniform heat transfer				
	(D)	Non-uniform heat transfer				
	(E)	Answer not known				
130.	for ra	adiation heat transfer are F_{11}	es 1, 2, 3 and 4. The view factors $= 0.1$, $F_{12} = 0.4$ and $F_{13} = 0.25$. 4 m ² and 2 m ² respectively. The (B) 0.25 (D) 0.75			
131.	Glass	sis				
	(A)	transparent at short wavelengths				
	(B)	B) opaque for high temperature radiation				
	(C)	opaque for low temperature ra	adiation			
	(D)	transparent at long wavelengt	ths			
	(E)	Answer not known				

- 132. Which of the following is incorrect regarding combustion of hydrogen?
 - (1) 2 volumes of H_2 combined with 1 volume of O_2 gives 3 volumes of H_2O
 - (2) Volumetric expansion takes place during combustion of hydrogen
 - (A) (1) only
 - (B) (2) only
 - (C) Both (1) and (2) are incorrect
 - (D) Both (1) and (2) are correct
 - (E) Answer not known
- 133. Which of the following are true regarding EGR?
 - (1) It is the most effective way of reducing emission
 - (2) It increases thermal efficiency
 - (3) It increases HC emission
 - (A) (1) and (2) only

(B) (1) and (3) only

(C) (2) and (3) only

- (D) (1), (2) and (3) are correct
- (E) Answer not known
- 134. The inversion temperature of Joule-Thompson expansion applied to a Vander-Waal's gas equation is
 - (A) $\frac{2b}{Ra}$

(B) $\frac{2a}{Rb}$

(C) $\frac{\text{Rb}}{2\text{a}}$

- (D) $\frac{\text{Ra}}{2\text{b}}$
- (E) Answer not known


- 135. A balloon is inflated by filling compressed air to a volume of 10 m³. The work done by the balloon upon the atmosphere during the process when the barometer reads 760 mmHg is
 - (A) 1.01325 kJ

(B) 10.1325 kJ

(C) 101.325 kJ

(D) 1013.25 kJ

- (E) Answer not known
- 136. A system is taken from State A to State B via path A-C-B in the course of which 80 kJ of heat flows into the system which executes 30 kJ of work. If the same State B is reached via the path A-D-B during which the work done by the system is 10 kJ, the amount of heat flow into the system will be

(A) 100 kJ

(B) 80 kJ

(C) 70 kJ

- (D) 60 kJ
- (E) Answer not known
- 137. For a given fuel and given pressure and the temperature of the reactants, the maximum adiabatic flame temperature that can be achieved is with a
 - (A) Rich mixture

- (B) Lean mixture
- Stoichiometric mixture
- (D) Equivalence mixture
- (E) Answer not known

138.	Whic	h of the following are true rega	h of the following are true regarding flashed steam system?			
	(1)	Requites larger total mass flow	v rates.			
	(2)	Lesser corrosion of piping.				
	(3)	Temperature and pressure of the water may not be sufficient to produce flash steam.				
	(A)	(1) and (2) only	(B) (2) and (3) only			
	(C)	(1) and (3) only	(D) (1), (2) and (3)			
	(E)	Answer not known				
139.		or a closed system undergoing a polytropic expansion, the work utput				
	(1)	is independent of n				
	(2)	increases with the increase of	n			
	(3) increases with the decrease of n					
	(4)	is maximum when $n = \infty$ (infin	nity)			
	(5)	is maximum when $n = 0$				
	(A)	(1), (3) and (4)	(B) (1), (3) and (5)			
	(C)	(2) and (4)	(B) (3) and (5)			
	(E)	Answer not known				
140.	Whic	ch one of the following is not be	longs to the low grade energy?			
	(A)	Heat available from combustic	on of fuels			
	(B)	Kinetic energy of jets				
	(C)	Thermal energy				
	(D)	Nuclear energy				
	(E)	Answer not known				

44

528-Chemical and Mechanical Engineering

- 141. A ball and a Socket Joint form a
 - (A) turning pair

(B) rolling pair

(C) sliding pair

- (D) spherical pair
- (E) Answer not known
- 142. The amount of energy absorbed by a flywheel is found from
 - (A) Speed Energy diagram
 - (B) Velocity Crank angle diagram
 - (C) Acceleration Crank angle diagram
 - Torque Crank angle diagram
 - (E) Answer not known
- 143. Two springs are connected in series with a stiffness of K_1 and K_2 respectively. What is frequency of vibrating system with mass m, if
 - (a) $K_1 = K_2$ and (b) $K_1 = 2K_2$.
 - (A) $\frac{1}{2\pi} \sqrt{\frac{2m}{K_2}}, \frac{1}{2\pi} \sqrt{\frac{3m}{2K_2}}$
- (B) $\frac{1}{2\pi} \sqrt{\frac{2K_2}{m}}, \frac{1}{2\pi} \sqrt{\frac{3K_2}{2m}}$
- (C) $\frac{1}{2\pi}\sqrt{\frac{2K_2}{3m}}, \frac{1}{2\pi}\sqrt{\frac{K_2}{2m}}$
- $\frac{1}{2\pi}\sqrt{\frac{K_2}{2m}}, \frac{1}{2\pi}\sqrt{\frac{2}{3}}\frac{K_2}{m}$
- (E) Answer not known

144.	Matc	ch the following:		
	(1)	Bolt and nut	(a)	Higher pair
	(2)	Crank shaft and bearing	(b)	Lower pair
	(3)	Cam and follower		
	(4)	Toothed gear		
	(A)	(1, b) (2, b) (3, a) (4, a)	(B)	(1, a) (2, b) (3, a) (4, b)
	(C)	(1, a) (2, a) (3, b) (4, b)	(D)	(1, b) (2, a) (3, b) (4, a)
	(E)	Answer not known		
145.		is the device used to transmother when desired. The axes of Clutch CAM Answer not known	of tw (B)	
146.		e lines of action of three or moven as point.	re fo	orces intersect at a point, it is
	(A)	equilibrium	(B)	zero
	(C)	central	(D)	concurrency
	(E)	Answer not known		

147. Match the following:

- (a) Undamped
- (1) damping factor <1
- (b) Under damped
- (2) Time period = $2\pi/\text{damping}$ frequency
- (c) Critical damped
- (3) damping factor = 0
- (d) Over damped
- (4) Timeperiod = infinity
- (5) Damping factor > 1
- (6) Damping factor = 1
- (7) Time period = $\frac{2\pi}{\text{natural frequency}}$
- (a) (b) (c) (d)
- (A) 1,7 3,2 5,4 6,7
- **(B)** 3,7 1,2 6,4 5,4
- (C) 5.2 5.7 1.7 3.4
- (D) 6,7 6,2 3,2 1,2
- (E) Answer not known

148. Match the following:

(a) Critical damping

 $(1) \qquad \frac{C}{2\sqrt{Km}}$

coefficient (C_c)

- (b) Damping coefficient (C)
- (2) $\xi W_n T_d$
- (c) Damping factor (ξ)
- (3) $2\xi m W_n$
- (d) Logarithmic decrement (δ)
- (4) $2\sqrt{Km}$

Where K = stiffness coefficient

m = mass

 $T_d =$ damping time period

 W_n = natural frequency

- (a) (b) (c) (d)
- (A) 4 3 2
- (B) 1 2 3 4
- **(2)** 4 3 1 2
- (D) 1 2 4 3
- (E) Answer not known

149. The velocity of the belt for maximum power is:

Where m = mass of the belt in Kg per metre length

(B) $\sqrt{\frac{T}{4m}}$

(C) $\sqrt{\frac{T}{5m}}$

(D) $\sqrt{\frac{T}{6m}}$

150.	Mom	ent of inertia of a semi-circle al	bout its XX-axis is given by
	(A)	$0.22~\mathrm{r}^3$	(B) $0.11 r^4$
	(C)	$0.14 \ r^4$	(D) $0.2 r^4$
	(E)	Answer not known	•

- 151. The centroid of a semicircle of radius R about its centroidal axis parallel to its diametric axis is
 - (A) $3R/4\pi$ (B) $3R/8\pi$ (C) $4R/\pi$ (D) $4R/3\pi$
 - (E) Answer not known
- 152. Which of the following theories is suitable for ductile materials?
 - (A) Maximum principle stress theory
 - (B) Maximum principle strain theory
 - Maximum shear stress theory
 - (D) Distortion energy theory
 - (E) Answer not known

153.	Matc	h the	follov	ving :			
	(a) Rivet head-snap head					1.	Maximum strength
	(b)			_	ter sunk head	d 2.	Hand hammering
	(c)	Rive	et head	d-conic	eal head	3.	Ship building
	(d)	Rive	et head	d-Pan	head	4.	Structural work
		(a)	(b)	(c)	(d)		
	(A)	1	$\stackrel{\circ}{2}$	3	4		
	(B)	4	3	2	1		
	(C)	1	4	2	3		
	(D)	4	2	3	1		
	(E)	Ansv	wer no	t knov	vn		
		_					
154.	Whic	h one	e is no	t a pos	sitive locking	device?	
	(A)	Cott	er pin			(B) Sp	oring wire lock
	(C)	Tong	gued w	vasher	•	(D) Sp	oring washer
	(E)	Ansv	wer no	t knov	wn.		
155.	A rod of length <i>l</i> and diameter <i>d</i> is subjected to a tensile ton Which of the following is sufficient to calculate the resulting chain diameter?						
				11	_		
	(A)		ng's M		S	Fæ.	
	(B)		ar Mod				
	(C)	Pois	son's r	atio			

Answer not known

(D)

(E)

Both Young's Modulus and Poisson's ratio

- 156. A cantilever of length (*l*) is carrying a uniformly distributed load of (*w*) per unit run over the whole span. The deflection of the free end is given as
 - (A) $wl^3 / 4EI$

(B) $wl^2 / 4EI$

(C) $wl^4 / 8EI$

- (D) $wl^4 / 16EI$
- (E) Answer not known
- 157. Two shaft will have equal strength, if
 - (A) Diameter of both the shafts is same
 - (B) Angle of twist of both the shafts is same
 - (C) Material of both the shafts is same
 - (D) Twisting moment of both shafts is same
 - (E) Answer not known
- 158. Connecting rod of an I.C. Engine subjected to
 - (A) Tensile × Compressive stress
 - (B) $Tensile \times Shear stress$
 - (C) Shear × bending stress
 - (D) Bending \times Compressive stress
 - (E) Answer not known
- 159. Torsional resilience of a solid shaft is

$$U = \frac{\tau^2}{4C} \times V$$

(B)
$$U = \frac{\tau^3}{4C} \times V$$

(C)
$$U = \frac{\tau^2}{2C} \times V$$

(D)
$$U = \frac{\tau^3}{2C} \times V$$

160.	. The distance between the center of a rivet and the center of the adjacent rivet along the same row is called as		
	(A)	Pitch	(B) Back pitch
	(C)	Gauge line	(D) Gauge distance
	(E)	Answer not known	
161.		ano method used for solvin tion is also known as	g algebraic and transcedental
	(A)	Secant method	(P) Bisection method
	(C)	Falsi method	(D) Root squaring method
	(E)	Answer not known	
162.		order of convergence of Newto	n's method of solving non linear
	(A)	1	(B) 2
	(C)	3	(D) 4
	(E)	Answer not known	·
163.			initial condition $y(x_0) = y_0$ of the
	form	$y^{(n)} = y_0 + \int_{x_0}^{x} f(x, y^{(n-1)}) dx$ and	this formula is called as
	(A)	Taylor's formula	(B) Newton's formula
	(C)	Picard's iteration formula	(D) Euler method

164. Simpson's 3/8th rule is applicable to solve $\int_{x_0}^{x_n} y(dx)$, $n = \frac{x - x_0}{h}$ where

h is interval of differencing only when n is

(A) Multiple of 5

(P) Multiple of 3

(C) Multiple of 2

- (D) Multiple of 8
- (E) Answer not known
- 165. Hyperbolic equation is represented in the form of
 - $(A) u_{xx} + u_{yy} = 0$

(B) $u_{xx} + u_{yy} = f(x, y)$

 $(C) \quad a^2 u_{xx} - u_{tt} = 0$

- (D) $a u_{xx} = u_{x,t}$
- (E) Answer not known
- 166. The matrix Eigen value problem can be sated in the form of
 - $(A) \quad Hx = \lambda x$

(B) $H - \lambda = 0$

(C) $H - \lambda I = 0$

- (D) $(H + \lambda I)x = 0$
- (E) Answer not known
- 167. The error in Simpson one third formula to solve $\int_{x_0}^{x_n} f(x)dx$ with h as interval of differencing will be in the order of

53

(A) h

(B) h^2

(C) h^3

- (D) h^4
- (E) Answer not known

- (A) Poisoning(B) Sintering(C) Fouling(D) All the above
 - (E) Answer not known
- 169. In the chemical reaction, no fluid enters or leaves the reaction mixture during reaction time is called as
 - (A) Ideal batch reactor
 - (B) Plug flow reactor
 - (C) Continuous stirred tank reactor
 - (D) Fluidized reactor
 - (E) Answer not known
- 170. In non-ideal flow, the two-phase system, A stream of solids always behaves as a
 - (A) Micro fluid

(B) Macro fluid

(C) Ideal fluid

- (D) Flowing fluid
- (E) Answer not known
- 171. Let A be a square matrix of order 3 and λ be a scalar (eigen value),

the column matrix $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ which satisfies $(A - \lambda_1)x = 0$ is called

(A) Eigen vector

(B) Eigen values

(C) Eigen function

- (D) Vectors
- (E) Answer not known

172.		u = f(x, y) be a function of rentiating u with respect to ' x '			
	(A)	The partial differential co-effic	cient	of	$u, w \cdot r \cdot \text{ to '}x'.$
	(B)	Eigen value			
	(C)	Eigen function			
	(D)	Algebraic equations	2		
	(E)	Answer not known			
173.		reactant may produce aside pativates the surface, this phenon			
	(A)	Series deactivation	(B)	Sid	le-by-side deactivation
	(C)	Parallel deactivation	(D)	Ind	dependent deactivation
	(E)	Answer not known			
174.	The	most common example of a unit	mole	cul	ar reaction is
	(A)	Radioactive decay	(B)	Co	mbustion of coal
	(C)	Synthesis of ammonia	(D)	Mε	anufacture of soap
	(E)	Answer not known			
175.		e the type of reactor, in whi es from point to point along a flo			_
	(A)	Mixed flow	(B)	Ba	tch
	(C)	Semi batch	(D)	Plu	ag flow
	(E)	Answer not known			

176.	An impurity in the feed may deposit on and deactive the surface is called as		
	(A)	Series deactivation	(B) Parallel deactivation
	(C)	Independent deactivation	(D) Side-by-side deactivation
	(E)	Answer not known	
177.	Crac	king of crude oil is an example	of
	(A)	Non catalytic reaction	(B) Catalytic reaction
	(C)	Homogeneous reaction	(D) Enzyme reaction
	(E)	Answer not known	
178.		fluid elements of a single flow by delayed in their flow throu	wing stream can mix with each gh the vessel is termed as
	(A)	Earlier mixing	
~	(P)	Late mixing	
	(C)	State of Aggregation	
	(D)	Residence Time distribution	
	(E)	Answer not known	
179.	In ar	n ideal Plug Flow Reactor (PFR), the composition of reactants :
	(A)	Changes along the length of the	ne reactor
	(B)	Remains constant through our	t the reactor
	(C)	Is same as the exit composition	n
	(D)	Is same at every cross section	
	(E)	Answer not known	

180.	Which reactor gives the highest conversion for a first order reaction with the same resistance time?					
	(A) Plug Flow Reactor					
	(B)	Batch Reactor				
	(C)	Fluidized bed Reactor				
	(D)	Continuous stirred tank react	or			
	(E)	Answer not known				
181.	The	secondary texture (or) waviness	s on surface results due to			
	(A)	Normal action of the tool in pr	oduction process			
	(B)	Vibrations and non-uniformity	of cutting process			
	(C) Flaws in material					
	(D)	Dominant direction of tool ma	rks (lay)			
	(E)	Answer not known				
182.		tive Pricision Index (RPI) bility compatibility is defined a	used to evaluate the process s			
	(A)	Average Range / Tolerance				
	(B)	Tolerance / Average Range				
	(C)	Number of Samples / Average	range			
	(D)	Number of Samples / Tolerand	e			
	(E)	Answer not known				
183.	Stati	stical quality control was devel	oped by			
	(A)	Frederick Taylor	(B) Walter Shewhart			
	(C)	George Danzig	(D) W.E. Deming			

(E)

Answer not known

184.	In lir	In limits and fits system, basic shaft system is one whose		
	(A)	Lower deviation is zero		
	(B)	Upper deviation is zero		
	(C)	Minimum clearance is zero	•	
	(D)	Maximum clearance is zero		
	(E)	Answer not known		
185.	The	control charts for attribute is co	oncerned with	
	(A)	Qualitative checking of defects	S	
	(B)	Direct measurement of the var	riable for control	
	(C)	Checking if the variable is out	of control	
	(D)	Actual measurement of the standard	parameter, comparing with a	
	(E)	Answer not known		
186.	Surfa	ace roughness on a drawing is r	represented by	
	(A)	Squares	(B) Circles	
	(C)	Triangles	(D) Dots	
	(E)	Answer not known		
187.		nprove the self lubricating ca the following finishing operati	apacity of a powder metallurgy on is used	
	(A)	Repressing	(B) Sizing	
	(C)	Infiltration	(D) Impregnation	
	(E)	Answer not known		

- 188. Addition of Magnesium to Cast iron increases its
 - (A) Hardness
 - (B) Ductility and strength in tension
 - (C) Corrosion resistance
 - (D) Creep strength
 - (E) Answer not known
- 189. Tempered Martensite is a combination of
 - (A) Ferrite and austenite
 - Ferrite and Carbide
 - (C) Ferrite and Cementite
 - (D) Ferrite and Bainite
 - (E) Answer not known
- 190. The Fick's first law of diffusion is given by

(A)
$$\frac{dm}{dt} = \frac{d}{dx} \left(D \cdot \frac{dc}{dx} \right)$$

(B)
$$\frac{dm}{dt} = D \cdot A \cdot \frac{dc}{dx}$$

$$(C) \frac{dm}{dt} = -D \cdot A \cdot \frac{dc}{dx}$$

(D)
$$\frac{dm}{dt} = D \cdot \frac{dc}{dx}$$

- (E) Answer not known
- 191. An atmospheric pressure (Pressure arbitrary chosen), a material of unknown composition shown four phases in equilibrium at 710 °C. What is the minimum number of components in the system?
 - (A) 1

(B) 2

(C) 3

- (D) 4
- (E) Answer not known

192. The process of introducing Carbon and Nitrogen into a solid ferrous alloy is known as

(A) Carbonitriding

(B) Nitriding

(C) Carburizing

(D) Cyaniding

(E) Answer not known

193. If f = feed per revolution of drill, L = Length of hole to be drilled and N = rpm of drill, then drilling time (T) in minutes is given by

(A) $T = N \times L \times f$

(B) $T = N \times L/f$

(C) $T = f/N \times L$

(D) $T = L/N \times f$

- 194. Inter electrode gap in Electro Chemical Grinding [ECG] is controlled by
 - (A) Controlling the pressure of electrolyte flow
 - (B) Controlling the applied static load
 - (C) Controlling the size of diamond particle in the wheel
 - (D) Controlling the texture of the workpiece
 - (E) Answer not known
- 195. Internal gears are made by
 - (A) Hobbing
 - (B) Shaping with Pinion cutter
 - (C) Shaping with Rack cutter
 - (D) Milling
 - (E) Answer not known

196.	Deep hole drilling of small diameter, say 0.2 mm is done with EDM by selecting the tool material as			
	(A)	Copper wire		
	(B)	Tungsten wire		
	(C)	Brass wire		
	(D)	Tungsten carbide		
	(E)	Answer not known		
	` '			
197.	Bras	ses and Bronzes are welded by	;	
	(A)	Neutral flame	(B) Reducing flame	
	(C)	Oxidising flame	(D) Carburizing flame	
	(E)	Answer not known		
198.	For p	oress forging which one of the fe	ollowing statement is correct?	
	(A)	Press forging is done with the	help of hammer	
	(B)	Small parts like rivets, bolts c	an not be produced	
	(C) Shape of the product is accurate			
	(D)	Can not be used for mass prod	uction	
	(E)	Answer not known		
199.		ng the cupola melting of cast ent is picked up from the furna	iron, which one of the following ce?	
	(A)	Manganese	(B) Phosphorous	
	(C)	Sulphur	(D) Silicon	
	(E)	Answer not known		

200. Which one of the following metals is not suitable for testing with Ultrasonics?

(A) Cu

(B) Al

(C) Cast Iron (CI)

(D) Stainless Steel