COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POST)

COMPUTER BASED TEST

DATE OF EXAM: 21.07.2025 FN

PAPER - II - ZOOLOGY AND MEDICAL ENTOMOLOGY (PG DEGREE STD.) (CODE: 567)

1.	Calc	ium is referred as second me	essenger	because						
	(A)	it is related to RNA								
	(B)	many hormones mediate their action through calcium								
	VCX	it is involved in nerve impulse transmission								
	(D)	it brings message from out	side to in	nside of cell						
	(E)	Answer not known		8						
2.	The	co-enzyme which does not in	volve in	hydrogen transfer is						
	(A)	FAD	(B)	NADP+						
	(C)	$_{ m FH_4}$	(D)	FMN						
	(E)	Answer not known								
3.		hormone essentially require n and maintenance of pregn		e implantation of fertilized						
	(A)	Estrogens	(B)	Cortisol						
	(C)	Prolactin	(D)	Progesterone						
	(E)	Answer not known		=1						
4.	Cho	ose the right answer among	type:							
т.			type.							
	1771.7	per is essential for the	a	8						
	(i)	Synthesis of melanin and p	hospholi	ipids						
	(ii)	Development of bone and r	iervous s	system						
	(iii)	The transmission on nerve	impulse							
	(A)	(i) only	(B)	(ii) and (iii) only						
	C	(i) and (ii) only	(D)	(ii) and (iii) only						
	(E)	Answer not known								

- 5. The abnormally high storage levels of vitamins K in the body
 - (i) is caused by demineralization of the bones
 - (ii) is due to hypervitaminosis K
 - (iii) leads to hemolytic anemia and jaundice
 - (A) (i) only
 - (B) (i) and (ii) only
 - (C) (iii) only
 - (D) (ii) and (iii) only
 - (E) Answer not known
- 6. Choose the right answer:

Oxaloacetate and α -ketoglutarate are precursors for the synthesis of

- (A) Cystosine and uracil only
- (B) Thymine only
- Purines and pyrimidines only
- (D) Purines only
- (E) Answer not known

7. Choose the right matches among type:

(1) Thiamine – coenzyme for α -ketoglutarate

dehydrogenase

(2) Riboflavin – a electron acceptor for isocitrate

dehydrogenase

(3) Pantothenic acid - coenzyme, attached to active carboxylic

residues, acetyl coA

(4) Niacin - coenzyme for succinate dehydration

(A) (1) and (3) are correct

- (B) (1) and (2) are correct
- (C) (2) and (3) are correct
- (D) (3) and (4) are correct
- (E) Answer not known
- 8. The enzymes present in the membrane of mitochondria are

(A) Flavoproteins and cytochromes

- (B) Fumarase and lipase
- (C) Catalase and lipase
- (D) Zymase and cytochromes
- (E) Answer not known

9. Assertion and Reason type:

Assertion [A] :

Ergosterol is an important precursor for

vitamin 'D'.

Reason [R]

When exposed to light the ring B of ergosterol

opens and its converted to ergocalciferol, a

compound containing vitamin D activity

(A) [A] is true but [R] is false

Both [A] and [R] are true; and [R] is the correct explanation of [A]

- (C) [A] is false, [R] is true
- (D) Both [A] and [R] are true, but [R] is not the correct explanation of [A]
- (E) Answer not known
- 10. Choose the right answer:

The α and β cylic forms of D-glucose are

(A) Ketoenol pair

(B) Tautomers

(C) Enantiomers

(D) Anomers

- (E) Answer not known
- 11. Chemical composition of chromomere is

(A) DNA and proteins

(B) DNA and lipids

(C) DNA and carbohydrates

(D) Proteins and lipids

(E) Answer not known

12.	A molecule acting as a "second messenger" in biological system					
	(A) cDNA					(B) cAMP
	(C)	tRN	ΙA			(D) hnRNA
	(E)	Ans	swer no	ot knov	vn	
13.	Mer	ntion	the fur	nction	of the	following cellular components :
	(a)				1.	Processing of proteins
	(b)		i appai	ratus	2.	
	(c)	100	soms		3.	
	(d)		matin		4.	rRNA Molecule
		(a)	(b)	(c)	(d)	
	(A)	$\frac{a}{1}$	2	3	4	
	(B)	3	4	2		
	100	2	1	4	3	
	(D)	4	3	2	1	
	(E)	Ans	swer no	ot knov	wn	
14.			c unit roteins		A pac	kaging, where DNA is wrapped around
	(A)	One	eron			(B) Nucleosome
	(C)	4.00000000	romoso	me		(D) Locus
	(E)		swer no		wn	(D) Books
	(11)	1111	ower in	ou milo	, V 11	
15.						proportional to the amount of thymine is proportional to cytosine residues
	(A)	Wa	tson's i	rule		(B) Chargaff's rule
	(C)	Fra	nklin's	rule		(D) Bragg's rule
	(E)	Ans	swer no	ot knov	wn	9 9
						7 567-Zoology and Medical Entomology [Turn over

16.	One statement is true regarding food vacuole of amoeba					
	(A)					
	(B)	medium is alkaline				
	(C)	medium is first acidic, then	alkaline			
	(D) medium is first alkaline then acidic					
	(E)	Answer not known				
17.	Linn	naeus discovered the	nomenclature.			
	(A)	Binomial, Trinomial	(B) Trinomial			
	(C)	Trinomial, Binomial	(D) Binomial			
	(E)	Answer not known				
18.	Colla	ar pores are present in the me	embers of phyla			
	(A)	Echinodermata	(B) Coelenterata			
	(C)	Ctenophora	(D) Chordata			
	(E)	Answer not known				
19.	The	connecting link between Anne	elida and Mollusca is			
	(A)	Limnaea				
	(B)	Chaetoderma				
	(C)	Nautilus				
	(D)	Neoplina				
	(E)	Answer not known				

- 20. Echinoderms are considered highest invertebrates because
 - (A) They are widely distributed
 - (B) They show resemblances with chordates in their embryonic development
 - (C) Coelom is enterocoel in both groups
 - (D) They are marine
 - (E) Answer not known
- 21. Spermatogonia in the testis develop in the
 - (A) Leydig cell
 - (B) Sertoli cell
 - (C) Sustentacular cells
 - (D) Seminiferous tubules
 - (E) Answer not known
- 22. [A]: LH hormone act on the Leydig cells and regulates testosterone secretion after puberty and in new born babies.
 - [R]: Leydig cells are numerous in newborn male baby and in adult male. But in childhood these cells are scanty.
 - (A) [A] is false [R] is not correct explanation
 - (B) Both [A] and [R] true
 - (C) [A] is false, [R] is true
 - (D) [A] is true but [R] is false
 - (E) Answer not known

23. Which statement is correct

- (i) Chorionic stimulate secretion of testosterone by developing testis in xy embryo
- (ii) Relaxin help softens the cervix in preparation for cervical dilation of parturition
- (iii) Progesteron encourge utrine contraction to provide quite environment for fetus
- (A) (i) and (ii)
- (B) (i) only
- (C) (ii) only
- (D) (iii) and (iv) only
- (E) Answer not known

24. Match the following:

- (a) Lung
- 1. Nephrocalcinosis
- (b) Kidney
- 2. Dyspnoea
- (c) Arteriole
- 3. Hyper parathyroidism
- (d) Parathormone
- 4. Blood pressure
- (a) (b) (c) (d)
- (A) 2 4 3 1
- (B) 2 4 1 3
- (C) 2 1 4 3
- (D) 2 1 3 4
- (E) Answer not known

- 25. The nerve impulse velocity can be measured with the help of a
 - (A) Electrocardiogram
 - (B) Cathode-ray oscilloscope
 - (C) Sphygmomanometer
 - (D) Glucometer
 - (E) Answer not known
- 26. The sequence of events during irritability
 - (i) (a) Stimulation (b) Excitation (c) Conduction (d) Response
 - (ii) (a) Stimulation (b) Excitation (c) Conduction (d) Blocking
 - (iii) (a) Stimulation (b) Excitation (c) Response (d) Conduction
 - (iv) (a) Stimulation (b) response (c) conduction (d) Excitation
 - (A) (i) only
 - (B) (ii) and (iii) only
 - (C) (i) and (ii) only
 - (D) (i) and (iii) only
 - (E) Answer not known

27. Permeability of the neuron's membrane

- [A]: Na⁺ ions are found in higher concentration out side the cell and low concentration inside the cell
- [R]: Na+ ions do not migrate inside along their concentration gradient.
- (A) [A] is true [R] is false
- (B) Both [A] and [R] is false
- Both [A] and [R] is true
- (D) [A] is false but [R] is true
- (E) Answer not known

28. Match the following:

- (a) Gustatory receptor
- 1. Sense of smell
- (b) Olfactor receptor
- 2. Taste buds
- (c) Gravity receptor
- 3. Neuromast organ
- (d) Audio receptor
- 4. Statocysts
- (a) (b) (c) (d)
- (A) 2 1 4 3
- (B) 2 1 3 4
- (C) 2 3 4 1
- (D) 2 4 3 1
- (E) Answer not known

- 29. Which is the strongest muscle in the human body and also major muscle of mastication?
 - (A) Temporalis
 - (B) Medial pterygoid
 - (C) Masseter
 - (D) Lateral pterygoid
 - (E) Answer not known
- 30. Which of the following buffers will be most effective in blood (PH=7.4)?
 - (A) Carbonic acid Bicarbonate buffer system
 - (B) Phosphate buffer system
 - (C) Hemoglobin buffer system
 - (D) Protein buffer system
 - (E) Answer not known
- 31. What triggers the release of calcium from the sarcoplasmic reticulum into the cytoplasm of muscle cell?
 - (A) Trigger of an action potential
 - (B) Decrease in pH
 - (C) Increase in oxygen concentration
 - (D) Presence of glucose
 - (E) Answer not known

32.	Duri leng	ing muscle contraction which region of the sarcoma decreases in the
	(A)	A-band (B) H-zone
	(C)	Z-line (D) M-line
	(E)	Answer not known
33.		ch of the following is the correct equation for the conversion of hrombin to thrombin
	(A)	Prothrombin + Ca^{2+} +prothrombinase \rightarrow Thrombin
	(B)	Prothrombin + Fibrinogen \rightarrow Thrombin
	(C)	Prothrombin + Vitamin $K \rightarrow$ Thrombin
	(D)	Prothrombin + platelets \rightarrow Thrombin
	(E)	Answer not known
34.	Whe	en red blood cells are placed in 2% sodium chloride solution
	(A)	Cells undergo hemolysis
	(B)	Endosmosis takes place
	CX	Cells undergo crenation
	(D)	Cells maintains normal shape
	(E)	Answer not known
35.	Reti	culocytes develop into mature red blood cells within after their release from red bone marrow
	A	1 to 2 days (B) 2 to 3 days
	(C)	3 to 4 days (D) 4 to 5 days
	(E)	Answer not known

14

567-Zoology and Medical Entomology

36.	Read the follow	ving statements	:	
	Assertion [A]	: Erythrocytes Hemoglobin.		ygen carrying protein
	Reason [R]:	RBC lack anaerobicall	mitochondria y.	and generate ATP
	Choose the cor	rect option.		
	(A) [A] is tru	e but [R] is false	е	
	(B) Both [A]	and [R] are true	2	
	(C) [A] is fals	se, [R] is true		
	~] and [R] are ion of [A]	true, but [R]	is not the correct
	(E) Answer r	not known		
37.			e bolus from the	e mouth and pharynx llled
	(A) Digestion	ı	(B) Deglu	tition
	(C) Eating		(D) Propu	
	(E) Answer r	not known		
38.	The cells of t		ngerhans that p	produce glucagon and
	(A) α and β	cells	(B) β and	$d \alpha$ cells
	(C) β and δ	colle	$(D) \propto anc$	l & colle

(E) Answer not known

39.	Wha	t is the role of the pancreas	in protein digestion?
	-(A)	secretes trypsinogen and c	
	(B)	secretes bile salts	J. Francisco
	(C)	absorbs amino acids	
	(D)	produces intrinsic factor	
	(E)	Answer not known	
40.		en below are the location of atched correctly.	the salivary glands. Which of them
	(1)	Parotid glands –	Anterior to the ears
	(2)	Submandibular glands –	Beneath the tongue
	(3)	Sublingual glands –	Floor of the mouth
	(A)	(1) and (2) are correct	
	(B)	(2) and (3) are correct	
	(C)	(3) and (1) are correct	
	(D)	(1) only correct	
	(E)	Answer not known	
41.		ch of the following is not enesis?	the substage of meiotic phase of
	A	Synthesis of ribosomes	(B) Growth of oocyte
	(C)	Yolk synthesis	(D) Egg membrane deposition
	(E)	Answer not known	

42.	. Why are egg cells become large sized and immotile?							
(1) To supply half of the chromosomal complement								
	(2)	To supply cytoplasm to the fu	ture	embryo				
	(3)	To supply food reserves to the	e emb	oryo				
	(4)	To give beauty to the embryo						
	(A)	(2), (3) and (4)						
	B	(1), (2) and (3)						
	(C)	(4) only						
	(D)	(D) (1), (2) and (4)						
	(E)	Answer not known						
43.	In w	hich phase spermatagonia dou	bles	in volume?				
	(A)	Growth phase	(B)	Maturation phase				
	(C)	Multiplication phase	(D)	Spermiogenesis				
	(E)	Answer not known						
44.	Whi	ch cell phagocytose excess cyto	plasn	n cast off by spermatids?				
	(A)	Leydig cell	P	Sertoli cell				
	(C)	Interstitial cell	(D)	Seminiferous tubule				
	(E)	Answer not known						

- 45. Pick out the wrong statement from the following:
 - (1) Spermatogonia are resistant to high temperature.
 - (2) Mature spermatozoa are sensitive to high abdominal temperature.
 - (3) In bats the testes persist within the abdominal cavity throughout the life.
 - (4) In monotremes, the testes exist in the abdominal cavity.
 - (A) (1) and (2) only
 - (B) (2) and (3) only
 - (C) (3) only
 - (D) (4) only
 - (E) Answer not known
- 46. From the following statement find out the incorrect one.
 - (1) No proliferating Oogonia are seen in an adult ovary of mammals.
 - (2) In fish and amphibians, the proliferative phase is seasonal throughout the life.
 - (3) All oogonia are matured into functional eggs.
 - (4) Primordial germ cells multiply by meiosis
 - (A) (2) only

(B) (1) and (3) only

(C) (2) and (4) only

- (D) (4) only
- (E) Answer not known

47.	Pick	out correct statem	ent about l	naploi	d syndror	ne.						
	(1)	Parthenogenetic development.	embryos	are	haploid	and	die	during				
	(2)	Amictic produce haploid eggs and develop into haploid male.										
	(3)	The Diploid queen	The Diploid queen bees lay haploid eggs after meiosis.									
	(4)	In wasp the squeezed eggs produce haploid male.										
	(A)	(1) only										
	(B)	(3) only										
	(C)	(2) and (4) only										
	(D)	(1) and (3) only										
	(E)	Answer not know	n									
48.	In R	otifers the Ameioti	c female eg	ggs de	velop into							
	(A)	Haploid male		(B)	Haploid	female	е					
	(C)	Diploid male		(D)	Diploid 1	female						
	(E)	Answer not know	n	•		,						
					287							
49.	Low	vitality of sperms	in the seme	en is l	nown as							
	A	Asthenospermia		(B)	Necrozo	ospern	nia					
	(C)	Taratozoospermia	ì	(D)	Azoospe	rmia						

(E)

Answer not known

- 50. In sea urchin embryo, micromeres implanted into the side of another 32-cell embryo resulted in
 - (A) the formation of another gut at the implantation site
 - (B) the formation of another brain at the implantation site
 - (C) the formation of a normal larva
 - (D) the formation of another heart at the implantation site
 - (E) Answer not known
- 51. The success of vaccination depends on what?
 - (A) presence of antigens in the serum
 - (B) generation of new diseases
 - generation of memory cells
 - (D) death of the patient
 - (E) Answer not known
- 52. Advantage of use of secondary antibody in indirect ELISA.
 - (1) Provides an additional step for signal amplification.
 - (2) Used with a wide variety of primary antibodies.
 - (3) Time consuming and expensive.
 - (4) Increase the overall sensitivity of the assay.
 - (A) (1), (2) and (3)
 - (B) (1), (2) and (4)
 - (C) (2), (3) and (4)
 - (D) (1), (3) and (4)
 - (E) Answer not known

- 53. Which statement is TRUE about the advantage of Homogeneous EIA over Heterogenous EIA?
 - (1) Reagents are added at a time
 - (2) Reagents are added at different steps
 - (3) Requires washing steps
 - (4) Never requires washing steps
 - (A) (1) and (4) are correct
 - (B) (1) and (3) are correct
 - (C) (2) and (4) are correct
 - (D) (3) and (2) are correct
 - (E) Answer not known
- 54. Match the following:
 - (a) Lymphokines
- 1. Communicate between cells
- (b) Cytokines
- 2. Produced by lymphocytes
- (c) Isoleukines
- 3. Humoral immune response
- (d) Immunoglobulins
- 4. Influence the activity of other cells
- (a) (b) (c) (d)
- (A) 4 1 2 3
- (B) 1 2 3 4
- (C) 2 4 1 3
- (D) 3 2 1 4
- (E) Answer not known

55.	Wh	ich statement of a secondary immune response is INCORRECT							
(1) Re-exposure to sam						me antigens			
	(2)	Pro	ductio	n of la	rger amo	unts	of antibodies		
	(3)	3) Activity of Specific Memory Cells							
	(4)	Wh	en an	antige	n enters	the l	oody		
	(A)	(1)	only				(B) (2) only		
	(C)	(3)	only				(D) (4) only		
	(E)	Ans	swer n	ot knov	wn				
56.	Ма	حاد حاد	- f-11						
50.	(a)			wing:	na	1	Stanbulanceael anteretoring		
	(a) (b)		ntigen	antige	IIS	1. 2.	Staphylococcal enterotoxins Polysaccharides		
	(c)		er antig			2. 3.	Streptococcus pyogenes		
	(0)	Dupe	antiş	gens		ο.	M-protein and human heart muscle protein		
	(d)	T cel	l depe	ndent a	antigens	4.	/m		
		(a)	(b)	(c)	(d)				
	(A)	(3)	(1)	(2)	(4)				
	(B)	(1)	(2)	(3)	(4)				
	(C)	(2)	(1)	(4)	(3)				
	(D)	(3)	(4)	(1)	(2)				
	(E)	Ansv	ver not	t know	n				
57.	Wh	ich is	the ve	ry pote	ent Chem	otac	etic factory for Neutrophils?		
	(A)	C4a					(B) C3b		
	(C)	C2a	1				(D) C5a		
	(E)		swer n	ot knov	wn		Tarionnos.		

58.	Whic	ch protein released by cytotoxi	c T cells are toxic to cancer cells?							
	(A)	Cytokines	(B) Lymphokines							
	(9)	Lymphotoxin	(D) Interleukins							
	(E)	Answer not known								
59.	Whic	ch of the following statement i	s true about Immune System?							
	(A)	Does not react to own antigens								
	(B)	Does not react to foreign antigens								
	400	React to own antigens in cancerous cells								
	(D)	React to own antigens in nor	mal cells							
	(E)	Answer not known	5 8							
60.	Whic cult		the virulence of the pathogenic							
	(1)	Oxidized								
	(2)	Aged								
	(3)	Fresh								
	(4)	Air-dried								
	(A)	(3) only	(P) (1), (2) and (4) only							
	(C)	(1), (3) and (4) only	(D) (2) only							
	(E)	Answer not known								

61. Match the following type:

Match the categories assigned for protected Areas (PAs) by the commission of National Parks and Protected Areas (CNPPA) of IUCN.

(Catego	ories		Protected Areas
(a)	I		1.	Natural Monument
(b)	II		2.	Habitat/Species Management Areas
(c)	III		3.	National Park
(d)	IV	4	4.	Strict Nature Reserve/Wilderness Areas
	(a)	(b)	(c)	(d)
(A)	4	1	3	2
(B)	4	2	3	1
(0)	4	3	1	2
(D)	4	3	2	1
(E)	Ans	wer n	ot know	vn

62. Match the following type:

Match correctly the Animal species protected with reference to schedule list of Wild Life (Protection) Act, 1975.

Schedule List Animal species protected (a) Schedule I Common Langur 1. (b) Schedule II 2. Golden Langur (c) Schedule III 3. Hedge Hog (d) Schedule IV Chital 4. (a) (b) (c) (d) (A) (1) (3)(4)(2)(B) (2) (1)(4)(3)(C) (2) (4)(1)(3)(D) (2) (3)(1)(4)(E) Answer not known

- 63. Section 12 of Chapter III in the "Environment (Protection) Act, 1986" describes about
 - (A) Government Analysts
 - (B) Reports of Government Analysts
 - (C) Environmental Laboratories
 - (D) Powers of entry and inspection
 - (E) Answer not known

- 64. Which chapter of the Environment (Protection) Act, 1986 describes about "Prevention, control and Abatement of Environmental Pollution"?
 - (A) Chapter I
 - (B) Chapter II
 - (C) Chapter III
 - (D) Chapter IV
 - (E) Answer not known
- 65. Choose the right answer among type:

Find the true statement about Chernobyl Nuclear Power Plant accident

- (i) The chernobyl nuclear power plant accident took place on 26th April, 1986.
- (ii) Explosion occurred in Reactor No. 4 of chernobyl nuclear power plant killing 106 workers instantly.
- (iii) An enormous concrete and steel shell or "Sarcophagus" was erected over the damaged reactor to prevent the escape of radioactive materials.
- (A) (i) and (ii) only

- (B) (i) and (iii) only
- (C) (ii) and (iii) only

- (D) (i), (ii) and (iii)
- (E) Answer not known

66.	Self purification is the process by which can carry out purification of polluted water to bring it back to its original state.								
	(i)	Bac	kwate	r					
	(ii)	Bra	Brackish water						
	(iii)	Rive	River						
	(A)	(i) only				(B) (ii) only			
	-(OX		only			(D) (i) and (ii) only			
	(E)		3,000	ot knov	/n	(2) (1) (11) (11)			
	(—)								
67	Nσ	1 1	C 11						
67.	Match the following:					Pollution			
	River				1.				
	(a)					DDT factors, power station			
	(b)				2.	Tanneries, rayon mills			
	(c)	Yamuna		3.	Rubber factories				
	(d)	Dajo	ra		4.	Sugar, paint, silk			
		(a)	(b)	(c)	(d)				
	(A)	(4)	(2)	(3)	(1)				
	(B)	(4)	(1)	(2)	(3)				
	(X)	(4)	(2)	(1)	(3)				
	(D)	(4)	(3)	(2)	(1)				
	(E)	Ansv	wer not	knowi	ı				
68.	Abnoxions gas which is liberated from automobiles an exhaust known as								
	(A)	Car	rbon di	oxide		(B) Carbon monoxide			
	(C)		bon			(D) Dust and odours			
	(E) Answer not known								

69.	Identify ozone depleters from the list of chemicals given below:							
	(i)	CFC						
	(ii)	Freons						
	(iii)	PVC						
	(iv)	HBA						
	AX	(i) and (ii) only	(B) (i) and (iii) only					
	(C)	(ii) and (iv) only	(D) (ii) and (iii) only					
	(E)	Answer not known						
70.	All the following are endemic species of western ghats except							
	(A)	Lion – tailed macaque (Mac	caca silenus)					
	B	Hoolock Gibbon (Hoolock h	oolock)					
	(C)	Nilgiri Tahr (Hemitragus h	ylocrins)					
	(D)	Brown plam civet (Paradox	urus jerdoni)					
	(E)	Answer not known						
	m	1 6 1 11 1						
71.		spread of air pollution for spread by the following	rom an industrial source can	be				
	(A)	Algae	(B) Fungi					
	(C)	Lichens	(D) Bryophytes					
	(E)	Answer not known						

72.	Which of the following statement on environmental education false?							
	(i)	To educate sustainable and ethical development both at locand global level						
	(ii)	To prepare the next generation to plan appropriate strategies						
	(iii)	It does not advocate a particular view point or course of action						
	(iv)	It is essential for younger generation only						
	(A)	(i), (ii) and (iv) only						
	BY	(iv) only						
	(C)	(ii) only						
	(D)	(ii) and (iii) only						
	(E)	Answer not known						
73.	Which country is prime in utilizing solar power?							
	(A)	America	(B) India					
	CX	Japan	(D) Korea					
	(E)	Answer not known						
74.		soil profile which contains a nic matter is known as	mixture of partially decomposed					
	A	A horizon	(B) B horizon					
	(C)	C horizon	(D) E horizon					
	(E)	Answer not known						

- 75. Coal-burning power plant converts
 - (A) Mechanical energy into thermal energy
 - (B) Mechanical energy into electrical energy
 - Chemical energy into thermal energy
 - (D) Chemical energy into mechanical energy
 - (E) Answer not known
- 76. Which is not the benefits of forest resource?
 - (1) Lungs of the earth
 - (2) Storehouse of water
 - (3) Producers of food chain
 - (4) Universal solvent
 - (A) (1) only
 - (B) (2) only
 - (C) (3) and (4)
 - (D) (4) only
 - (E) Answer not known

77.	Arr	ange the following assessment process for environment								
	(1)	Basics								
	(2)	Description of environmental setting								
	(3)	Selection of proposed action								
	(4)									
	(5)	Impact prediction and assessment								
	(A)	(1) (2) (5) (4) (3)								
	B	(1) (2) (5) (3) (4)								
	(C)	(1) (2) (3) (4) (5)								
	(D)	(1) (2) (4) (3) (5)								
	(E)	Answer not known								
		en e								
78.	Fin	d out non renewable resources from the following								
	(i)	Petrolium, Coal, Lignite, Fuel gases								
	(ii)									
	(iii)	ii) Petrolium, Coal, Wind, Solar								
	200	(iv) Petrolium, Coal, Wind, Lignite								
	(A)									
	(B)	(i) only								
	(C)									
	7.0223237.357									
	(D)									
	(E)	Answer not known								
79.		Wind mills convert wind energy in to mechanical energy by converting its ———— energy								
	(A)	Electric (P) Kinetic								
	(C)	Chemical (D) Potential								
	(E)	Answer not known								

80.	Arrange the following events in sequence of Anaerobic digestion								
	(1)	Wast	e wate	r feed					
	(2)	digester							
	(3)	biogas storage							
	(4)								
	(5)	gene	rator						
	(A)	(1)	(2)	(4)	(3)	(5)			
	(B)	(1)	(2)	(3)	(4)	(5)			
	(C)	(1)	(2)	(5)	(4)	(3)			
	(D)	(1)	(2)	(3)	(5)	(4)			
	-(E)	Ans	wer no	t know	'n				
81.	Choose the right matches among type:								
	(a)						ч.	Fasciola hepatica	
	20.0	organised							•
	(b)	Only smaller Quantities						2.	Ascaris
	, , , , , , , , , , , , , , , , , , ,	of eggs are released by female worm							
	(c)	Primary medical problem in man					3.	Schistomes	
		and economically important in cattle							
			domest		_				
	(d)	Each	proglo	ttid ha	ıs			4.	Ancyclostoma
		the a	bility t	o repro	oduce				duodenale
	(A)	(1) a	nd (2)	are cor	rect				
	(B)		nd (3)						
	(C)	8 6	(3) and			ct			
	(D)		nd (4)	120 %					
	(E)	10.	wer no						
	1		The second secon		acres and a second				

82. Choose the wrong matches type

Which of the following is in correct

- 1. King stage Amoeboid stage Schizorts Merozoites
- 2. Gametes Zygote Ookinete Oocyst Sporozoites
- 3. LD body Leptomonad form LD body binary fission
- 4. Trypanasoma form Metacyclic form Crithidial form Trypandasona from binary fission
- (A) (1) and (2)
- (B) (2) and (3)
- (C) (3) and (4)
- (D) (4) alone
- (E) Answer not known

83. Which are true about amoebic dysentery?

- 1. Acidic stools
- 2. Stools with blood and mucus
- 3. High fever
- 4. Stools with swarms of amoeba
- (A) (1) and (3) are correct
- (B) (2) and (4) are correct
- (C) (3) only
- (D) (1), (2) and (4) are correct
- (E) Answer not known

84.	Name the vector of visceral Leishmaniasis							
	(A) Mansonia annulifera							
	Phlebotomus argentipes							
	(C) Xenopsylla astia							
	(D) Culex vishnui							
	(E) Answer not known							
85.	Which is the smallest tape worm infecting man?							
	(A) Talhia Saginata (B) Taenia Solium							
	(D) Diphyllobothrium latum							
	(E) Answer not known							
86.	Which of the following is <u>not true</u> about the symptoms of Gambia fever							
	1. Head-ache							
	2. Asleep							
	3. Fever							
	4. Dysentery							
	(A) (1) and (2)							
	(B) (1) only							
	(C) (4) only							
	(D) (3) only							
	(E) Answer not known							

87. Assertion [A]: I

Infestation with fly maggots cause a condition

known as "myiasis".

Reason [R]

In human, following types of myiasis is described, enteric myiasis, dermal myiasis, ocular,

auricular, urinary and other locations of fly larva.

- (A) [A] and [R] are true
- (B) [A] and [R] are false
- (C) [A] is true [R] is false
- (D) [A] and [R] are false
- (E) Answer not known
- 88. Major symptoms of Bubonic plague are
 - (i) Inflammation of lymph glands.
 - (ii) Bacteria spreads to liver and spleen
 - (iii) Affect brain and vision.
 - (iv) Bacteria enters to blood stream.
 - (A) (i), (iii), (iv) are correct

(B) (i), (ii), (iv) are correct

(C) (i), (ii), (iii), (iv) are correct

(D) only (i) is correct

- (E) Answer not known
- 89. Why do sand fly eggs require a microhabitat with high humidity?
 - (A) To avoid predators
 - (B) To prevent desiccation (drying out)
 - (C) To encourage rapid movement
 - (D) To attract adult flies
 - (E) Answer not known

In tr	ransovarial transmission, w	here is the pathogen lo	ocated
(A)	On the surface of the egg		
(B)	In the saliva of the arthrop	ood	
(C)	In the host's blood stream		
	Inside the developing ovur	n (egg)	
(E)	Answer not known		
			for Anopheles
(A)	1-3 days	(B) 4-7 days	
(0)	10-14 days	(D) 20-30 days	
(E)	Answer not known		
Pest	<u>tis</u> <u>bubonic</u> (Plague) is trans	mitted by the pathoger	n
(A)	Virus		
(B)	Bacteria	*	
(C)	Bacteriophage		
	(A) (B) (C) (D) (E) What Mos (A) (C) (E)	 (A) On the surface of the egg (B) In the saliva of the arthrop (C) In the host's blood stream (D) Inside the developing ovur (E) Answer not known (E) Answer not known (A) 1-3 days (C) 10-14 days (E) Answer not known (E) Answer not known (E) Answer not known 	(B) In the saliva of the arthropod (C) In the host's blood stream (D) Inside the developing ovum (egg) (E) Answer not known What is the typical duration from egg to adult Mosquitoes in tropical condition? (A) 1-3 days (B) 4-7 days (C) 10-14 days (D) 20-30 days (E) Answer not known Pestis bubonic (Plague) is transmitted by the pathogen (A) Virus (B) Bacteria

(D)

(E)

Plagueophage

Answer not known

93.	Whic	Which of the following are true:				
	(i)	Mosquitoes have piercing and sucking mouthparts.				
	(ii)	Female mosquitoes suck blood by piercing the skin tissue.				
	(iii)	Older male mosquitoes suck blood of man.				
	(iv)	Culex male mosquitoes take blood meal.				
	(A)	(i) and (iv) are true (B) (i) and (iii) are true				
	10%	(i) and (ii) are true (D) (ii) and (iii) are true				
	(E)	Answer not known				
94.	Whic	ch of the following are true?				
	(i)	Taenia solium is a helminth parasite of man				
	(ii)	Onchosphere contains six hooks for attachment in the body of pig.				
	(iii)	Cysticercus larva is the infective stage				
	(iv)	Man is the secondary host for the development of the parasite Taenia				
	(A)	(i) only true (B) (i) and (ii) are true				
	(C)	(i), (iii) and (iv) are true (D) (i) and (iii) are true				
	(E)	Answer not known				
95.		te the organism which transmits infections pathogens from one to another?				

(A)

(C)

(E)

Plasmids

Producers

Answer not known

(B) Vectors

(D) Consumers

96.		ch of the following mosquito w fever?	spec	cies are known to transmit
	(A)	Anopheles Stephensi	(B)	Culex pipiens
	(0)	Aedes aegypti	(D)	Glossina palpalis
	(E)	Answer not known		
				•
97.	Wha in In	t is the scientific name of the s dia?	sand	fly that transmits Kale-azar
	(A)	Phlebotomus papatasi		
	B	Phebotomus argentipes		
	(C)	Phlebotomus verracarum		
	(D)	Phlebotomus brunetti		
	(E)	Answer not known		
98.		ch mosquito species is a majo thrives in organically polluted		, <u>, , , , , , , , , , , , , , , , , , </u>
	(A)	Aedes aegypti	B	Culax quinquefasciates
	(C)	Mansonia dives	(D)	Psorophora columbiae
	(E)	Answer not known		

99.	Whic	ch of the following statements a	bou	t adult bedbugs are true?				
	(i) The proboscis is slender and held closely under the heat prothorax when not feeding.							
	(ii) The proboscis is large and extended forward when the bed is not feeding.							
	(iii)	Adult bedbugs have functiona	l wii	ngs used for flying.				
	(iv)	When feeding, the Proboscis spierce the skin.	win	gs forward and downward to				
	A	(i) and (iv) only	(B)	(ii) and (iii) only				
	(C)	(i), (iii) and (iv) only	(D)	(i) and (ii) only				
	(E)	Answer not known						
100.	Styla	ate anteanae is found in which	of th	e following insect?				
	(A)	Mosquitoes	(B)	Wasps				
	S	Tabanus fly	(D)	Moths				
	(E)	Answer not known						
101	Noti	anal malaria aradiaatian nyagu		as launched in the week				

(A) 1955

(B) 1958

(C) 1953

- (D) 1956
- (E) Answer not known

102.	Zika virus infection during pregnancy is a cause ofother congential abnormalities in the developing fetus.									
	(A) (B)	Skeeter syndrome Guillain Barre syndrome								
	(C) (D) (E)	Cystic fibrosis Fetal Hydantoin syndrome Answer not known								
103.	Relapsing fever a bacterial diseases is transmitted by the infamily.									
	(A) (C) (E)	Eriophyidae Ixodidae Answer not known	(B) Muscidae(D) Argasidae							
104.		se the right answer : virus belongs to the genus. Herpes virus Flavi viruses Answer not known	(B) Orthopox viruses(D) Hepatitis virus							

105. Assertion [A] : Anopheles sp. are vectors of filariasis caused by Wuchereria Bancrofti.

Reason [R] :

: But they are absent in India.

- (A) [A] and [R] are correct
- (B) [A] and [R] are incorrect
- (C) [A] is correct but [R] is incorrect
- (D) [A] is incorrect but [R] is correct
- (E) Answer not known
- 106. Which is the most effective preventive measure against yellow fever?
 - (A) Antibiotic treatment
- (B) Bed nets and insecticides

(C) Vaccination

- (D) Antiviral drugs
- (E) Answer not known
- 107. To which genus and family does the chikungunya virus belong?
 - (A) Falvivirus, Flaviviridae
 - Alphavirus, Togaviridae
 - (C) Orthomyxovirus, Orthomyxoviridae
 - (D) Lentivirus, Retroviridae
 - (E) Answer not known

- 108. Which of the following is not a common control measure for culex mosquitoes?
 - (A) Eliminating standing water
 - (B) Mosquito Larviodal oils usage
 - (C) Using insecticides in urban drainage system
 - Using bed during daytime
 - (E) Answer not known
- 109. Which diseases are primarily transmitted by Aedes mosquito?
 - (A) Malaria, Zika virus, Filoriasis
 - Yellow fever, Dengue, Chikungunya, Zika virus
 - (C) Japanese encephalitis, west nile virus, Dengue
 - (D) Malaria, Chikungunya, Lyme Disease
 - (E) Answer not known
- 110. Assertion [A] : Vectors are essential in the spread of many
 - infectious diseases.
 - Reason [R] : Vectors act as carriers that transport

pathogens from an infected host to a

susceptible one.

- Both [A] and [R] are true, [R] is the correct explanation of [A]
- (B) Both [A] and [R] are true, but [R] is not the correct explanation of [A]
- (C) [A] is true, but [R] is false
- (D) [A] is false, but [R] is true
- (E) Answer not known

111.		t are the animals acts as a phalitis virus?	main 1	reservoirs	for	Japanese
	(A)	Dogs and cats	(B) Pigs	s and Migr	ator	y fowls
	(C)	Cattle and horses	(D) Hur	mans		
	(E)	Answer not known				
112.	Whe	re was the West Nile virus first	identifie	ed?		
	A	West Nile District, Uganda				
	(B)	West Nile State, Nigeria				
	(C)	West Nile Region, Kenya				
	(D)	West Nile Province, Tanzania				
	(E)	Answer not known				
113.		e the two countries which have and 2016 respectively?	been cer	rtified as N	Mala	ria tree in
	(A)	Srilanka and Maldives	(B) Sing	gapore and	l Ma	laysia
	(C)	India and China	(D) Mal	ldives and	Sril	anka
	(E)	Answer not known	•			
114.		ch of the following biological p , or the fundamental event of sy			y sy	nonymous
	(A)	Meiosis	(B) Mit	osis		
	(2)	Fertilization	TTP-3 900	netogenesi	s	
	(E)	Answer not known	23	880		
			2			

115. Assertion [A] : Most Zika virus infections are asymptomatic.

Zika virus causes severe neurological

complications in all infected individuals.

(A) Both [A] and [R] are true, and [R] explains [A]

(B) Both [A] and [R] are true, but [R] does not explain [A]

(C) [A] is true [R] is false

Reason [R]

(D) [A] is false [R] is true

(E) Answer not known

116. Assertion [A] : Zika virus was 1st identified in human in 1947.

Reason [R] : It was discovered during yellow fever surveillance in a monkey in the Zika forest.

(A) Both [A] and [R] are true, and [R] explains [A]

(B) Both [A] and [R] are true, but [R] does not explain [A]

(C) [A] is false, but [R] is true

(D) Both [A] and [R] are false

(E) Answer not known

117. How many species of Anopheles mosquitoes are major vectors of Malaria in India?

(A) About 4

(P) About 6

(C) About 30

(D) About 400

(E) Answer not known

118. Assertion [A]: Dengavaxia vaccine efficacy is higher in

seropositive individuals than in seronegative

individuals.

Reason [R] : Vaccine efficacy in seropositive individuals is

approximately double that in seronegative

individuals.

(A) Both [A] and [R] are true, and [R] explains [A]

- (B) Both [A] and [R] are true, but [R] does not explain [A]
- (C) [A] is true, but [R] is false
- (D) Both [A] and [R] are false
- (E) Answer not known
- 119. Which of the following is considered the most effective method for preventing the spread of Vector-Borne diseases?
 - (A) Mass media awareness
 - (B) Vector control techniques line IVM
 - (C) Antibiotic administration
 - (D) Genetic testing
 - (E) Answer not known
- 120. The Dipteran insect legs consist of five sections. Arrange the chronological order
 - (A) Coxa, Trochanter, Tibia, Femur and Tarsus
 - (B) Trochanter, Coxa, Tibia, Femur and Tarsus
 - (C) Trochanter, Coxa, Tarsus, Femur and Tibia
 - (D) Coxa, Trochanter, Femur, Tibia and Tarsus
 - (E) Answer not known

121.	Choo	se the right matches :		
	(1)	Rat flea	_	Beetle
	(2)	Natural enemies	-	Dragon fly
	(3)	Butterfly	-	Honey bee
	(4)	Parasite	10	Infected farm animals
	(A)	(1) and (3) are correct		(B) (1) and (4) are correct
	(C)	(3) and (4) are correct		(D) (2) and (3) are correct
	(E)	Answer not known		*
100	D 1			
122.		onic plague is caused by		
	(A)	Aphis		(B) Grub
	S	Rat flea		(D) Opisina
	(E)	Answer not known		
100	T.,		. J C.	. 1
123.	Insec		ıa ie	ed on human blood are called as
	A	Lice		(B) Termite
	(C)	Ants		(D) Flea
	(E)	Answer not known		
	2 4			
124.	Lous	e belongs to the order		
	(A)	Coleoptera		(B) Hemiptera
	(C)	Lepidoptera		(D) Phthiraptera
	(E)	Answer not known		

125.	A vec	ctor borne disease Kala azar is caused by
	(A)	House files Sand flies
	(C)	Dragon flies (D) Mosquitoes
	(E)	Answer not known
126.	Choo	ose the right answer among type:
	Whic	ch of the following statements are true about vibrio cholerae?
	(i)	Gram negative and curved rods shaped
	(ii)	V. Cholerae has a distinctive curved or round shaped appearance under a miscroscope
	(iii)	V. Cholerae's motility is facilitated by its single polar flagellum
	(A)	(i) only (B) (i) and (iii) only
	(C)	(i) and (ii) only (D) (ii) and (iii) only
	(E)	Answer not known
127.	Which in In	ch strain of Vibrio cholerae is mainly responsible for epidemics dia?
	(A)	Vibrio Cholerae 0139
	(B)	Vibrio Cholerae 0157
	(0)	Vibrio Cholerae 01

(D) Vibrio Cholerae 02

Answer not known

(E)

- 128. The four life stages of a Tick is
 - (A) Egg, Larva, Pupa, Adult
 - (B) Egg, Larva, Nymph, Pupa
 - (C) Larva, Nymph, Pupa, Adult
 - (D) Egg, Larva, Nymph, Adult
 - (E) Answer not known
- 129. Choose the right answer

One of the following is the primary mechanism of immune response to typhoid fever:

- Cell mediated immunity mediated by T-lymphocytes
- (B) Antibody production by B lymphocytes
- (C) Macrophages of innate immune response
- (D) Innate immune response in complement activation
- (E) Answer not known
- 130. Which of the following is a common source of infection for paratyphoid fever
 - (A) Infected blood
 - (P) Contaminated water and food
 - (C) Direct skin contact
 - (D) Under cooked meat
 - (E) Answer not known

131. Choose the right answer

The term 'Vector' in infectious diseases refers to

- (A) An antiviral drug
- (B) A type of bacterial strain
- (C) An organisms that transmit pathogens
- (D) A type of virus causes diseases
- (E) Answer not known

132. Choose the right answer among type

Which of the following statements are true about E .histolytica

- (i) E. histolytica exists in two forms, trophozoite and cystic forms
- (ii) The trophozoites are short-lived outside the human body; They are highly susceptible to environmental conditions, like temperature and moisture
- (iii) Cysts release trophozoites in Environment
- (A) (i) only

(B) (i) and (ii) only

(C) (i) and (iii) only

- (D) (ii) and (iii) only
- (E) Answer not known

133. Choose the right answer among type

Which of the following statements are true about cholera.

- (i) Cholera is a chronic disease
- (ii) The majority of infections are mild or asymptomatic
- (iii) Infected individuals can spread the bacteria through their faeces
- (A) (i) only

(B) (i) and (iii) only

(C) (i) and (ii) only

- (D) (ii) and (iii) only
- (E) Answer not known

134. Choose the right answer

The mites responsible for transmitting the disease known as scrub typhus is called

- (A) Demodex folliculorum
- (B) Trombiculid mite
- (C) Ixodes scapularis
- (D) Sarcoptes scabies
- (E) Answer not known

135. Rickettsia that causes scrub typhus is

- (A) Plasmodium knowlesi
- (B) Flavi virus
- Orientia tsutsugamushi
- (D) Wuchereria bancrofti
- (E) Answer not known

136.	36. The hard ticks are under the family of							
	(A)	Argasidae	(B) Ixodidae					
	(C)	Hyalomma	(D) Dermacentor					
	(E)	Answer not known						
81 (2012)	m							
137.	Tick	paralysis primarily caused by	a neurotoxin called					
	(A)	Exotoxins	(B) Biotoxins					
	(C)	Haemotoxins	(D) Holocyclotoxin					
	(E)	Answer not known						
138.	1227	The sequence which correctly represents the life cycle stages of cyclops:						
	(a)	$Egg \rightarrow Larva \rightarrow Pupa \rightarrow Adul$	lt					
	(b)	$\operatorname{Egg} \to \operatorname{Nauplius} \to \operatorname{Copepodid} \to \operatorname{Adult}$						
	(c)	$\operatorname{Egg} \to \operatorname{Nymph} \to \operatorname{Adult}$						
	(d)	$Egg \to Hatchlings \to Adult$	8 11					
	(A)	(a) and (c) only	(B) (b) only					
	(C)	(d) only	(D) (c) and (d) only					
	(E)	Answer not known						
139.	Choo	se the right answer						
		Name the developmental stage where a mite moults its skin multiple times before becoming an adult.						
	(A)	Egg	(B) Larva					
	(C)	Pupa	(D) Nymph					
	(E)	Answer not known	•					

140.	Isut	sugamusni is a disease aiso known as								
	A	Scrub typhus								
	(B)	Lyme disease								
	(C)	Rocky Mountain spotted fever								
	(D)	Rickettsial pox								
	(E)	Answer not known								
141.	The	district in Tamilnadu reported as free from malaria is								
	(1)	Coimbatore								
	(2)	Erode								
	(3)	Nilgris								
	(4)	Ramanathapuram								
	(A)	2 (B) 1								
	(C)	4 (D) 3								
	(E)	Answer not known								
142.		Drug policy regarding Malaria Treatment was introduced ng the year								
	(A)	2017 (P) 2013								
	(C)	2008 (D) 2006								
	(E)	Answer not known								

143.		onal Vector Borne Disease C me integral part of	Control Programme (NVBDCP) — in 2005)						
	(A)	World Health Organisation (WHO)								
8	(B)	National Rural Health Mission								
	(C)	New Policy of Health (NPH)								
	(D) National Nutrition Policy (NNP)									
	(E)	Answer not known								
144.	Mala	aria eradication defines								
	(1)	Reducing the 'Malaria disease'								
	(2)	Reduction of malaria endemicit	ty							
	(3)	Permanent reduction to 'zero'								
	(4)	Sanitizing the environment								
	(A)	(1) and (4) only	(B) (2) and (4) only							
	S	(3) only	(D) (1) and (2) only							
	(E)	Answer not known								
145.		ch of the following is <u>not</u> part of onal Vector Borne Disease Contr	of the three pronged strategy o crol Programme (NVBDCP)?	f						
	(1)	Community engagement								
	(2)	Disease management								
	(3)	Integrated vector management	t							
	(4)	Supportive interventions								
	(A)	(4) only	(B) (1) only							
	(C)	(3) and (4) only	(D) (1) and (2) only							
	(E)	Answer not known								

146.		ination of humans with ——— control measure.	——— yellow fever vaccine is th	e			
	A	17 D	(B) 17 E				
	(C) (E)	18 D Answer not known	(D) 16 D				
147.	Insec		ular system and poisoning ar	e			
	(A)	Contact insecticides	(B) Stomach insecticides				
	(X)	Systemic insecticides	(D) Fumigants insecticides				
	(E)	Answer not known					
148.		enzymes is decreased in nophosphate.	insecticide poisoning due t	0			
	(i)	Oximes					
	(ii)	Atropine					
	(iii)	Acetyl choline esterase					
	(iv)	All the above					
	Whic	ch of the above is/are correct?					
	(A)	(i) and (ii)	(B) (ii)				
	(0)	(iii)	(D) (iv)				
	(E)	Answer not known					

149.	. Choose the false answer among the following sign/symptoms of the organophosphorus poisoning						
	(i)	Cyanosis					
	(ii)	Abdominal cramp					
	(iii)	Pulmonary edema					
	(iv)	Dilated pupil					
	(A)	(i) only	(B) (ii) and (iii) only				
	(C)	(i) and (ii) only	(D) (iv) only				
	(E)	Answer not known					
150.	Which among the following is <u>not</u> a potential symptom of insecticide poisoning?						
	(i)	Breathing difficulties					
	(ii)	Increased appetite					
	(iii)	Vomitting					
	(iv)	Headache					
	(A)	(i) and (ii) only	(B) (ii) and (iv) only				
	(C)	(iii) and (i) only	(D) (ii) only				
	(E)	Answer not known					
151.	DDT	was first synthesized by					
	(A)	Hymen	(B) Faraday				
9	(0)	Zedler	(D) D. Herelle				
	(E)	Answer not known	,				
	12 15						

152. Choose the right option(s) among the following

- (i) Methonol is the specific antidote for poisoning by organophosphorus insecticides
- (ii) Atropine is the specific antidote for poisoning by organophosphorus insecticides
- (iii) Organophosphate interfere with mechanism of transmission of nerve impulses
- (iv) Neostigmine is the antidote for organophosphorus
- (A) (i) and (iv) only

(B) (iii) only

(C) (ii) and (iii) only

(D) (ii) and (iv) only

(E) Answer not known

153. Assertion [A]: DDT is very insoluble in water and persistent in

the environment many years.

Reason [R] : The half life will be 2 to 15 years thus it affect long

term effect on organisms.

- (A) [A] is true but [R] is false
- (B) Both [A] and [R] are true and [R] is not the correct explanation of [A]
- (C) [A] is false, [R] is true
- Both [A] and [R] are true and [R] is the correct explanation of [A]
- (E) Answer not known

154. Assertion [A]: IPM is integrated Pest Management.

Reason [R] : IPM signifies the combination of all. Pertinent

methods - chemical cultural, biological use of

resistant varieties.

- (A) [A] is true but [R] is false
- (B) Both [A] and [R] are true and [R] is the correct explanation of [A]
- (C) [A] is false [R] is true
- Both [A] and [R] are true but [R] is not the correct explanation of [A]
- (E) Answer not known

155. Match the diseases with disease producing insect of the following.

- (a) Malaria
- 1. Anophelus
- (b) Wuchereria
- 2. Aedes
- (c) Yellow fever
- 3. Flies
- (d) Diarrohoea
- 4. Culex
- (a) (b) (c) (d)
- (A) 1 4 2 3
- (B) 1 2 3 4
- (C) 2 1 4 3
- (D) 3 1 2 4
- (E) Answer not known

156. Choose the correct answer

A chemical which blocks cellular respiration is known as

(A) Nerve poison

(B) Respiratory poison

(C) Physical poison

- (D) Protoplasmic poison
- (E) Answer not known

157. Choose the right answer

The plague commission was appointed in the following year

1905

(B) 1907

(C) 1909

- (D) 1910
- (E) Answer not known

158. Match the following type

Match correctly the stomach poisoning in insects.

(a) Lead

- 1. Termites
- (b) Sodium arsenate
- 2. Moth and potato beetle
- (c) Sodium fluoride
- 3. Shoes and greenland
- (d) Cryolite
- 4. Poultry rice

(b) (c) (d) (a) 1 4 3 2 (B) 3 4 (C) 1 4 3 2

- (D) 2 3 4 1
- (E) Answer not known

	(i)	Coils	3								
	(ii)	Fogg	ers								
	(iii)	Yard	spray	or aer	rosols	S					
	(A) (i) only (B) (ii) and (iii) only										
	(C)	(i) ar	nd (iii)	only			(D) (i)	, (ii) and ((iii)		
	(E)	Ansv	ver no	t know	'n						
			5 2								
160.	Mat	ch the	follow	ing ty	pe:	2					
	Match correctly the order of the important species of the class insecta.										
	(a)	Bed b	ug		1.	Hemipt	tera				
	(b)	Huma	an lice		2.	Anoplu	ra				
	(c)	Crab	lice		3.	Anoplu					
	(d)	Flies			4.	Diptera	ı				
		(a)	(b)	(c)	(d)						
	A	1	2	3	4						
	(B)	2	1	4	3						
	(C)	4	3 1	$rac{1}{2}$	$\frac{2}{4}$						
	(D) (E)	3 Ansr		t know							
	(E)	Allsv	wei iio	t Know	11						
161.		ich o ficient		e foll	owin	g tech	nique	involves	sedir	nentat	ion
	(A)	Auto	radiog	graphy			(B) S _I	pectroscop	у		
	(C)	PCR	er e				(D) C	entrifugat	ion		
	(E)	Ansv	wer no	t know	'n						
						59			567-Zo		
								Me	dical Er ['	itomol Turn o	777-770

159. Choose the right answer among type forms of adulticides

162.	The follow		tion o	of nucleic acid is almost entirely due to the
3	(A)	Nucleotide	bases	(B) Sugar molecule
	(C)	RNA		(D) Phosphodiester bond
	(E)	Answer no	t knov	vn
163.		and the same of the same of		is expressed as a multiple of earth's then what is the value of 'g'?
	A	$981~\rm cms^{-2}$		(B) 9.81 cms^{-7}
	(C)	$981\ cms^4$		(D) 98.1 cms^4
	(E)	Answer no	t knov	vn
164.	Whic	h of the fol	lowing	s is correctly paired?
	(1)	TLC	_	Thick Layer Chromatography
	(2)	HPLC	_	High Pumping Liquid Chromatography
	(3)	GLC		Glucose Liquid Chromatography
	(4)	CCC	, 	Counter Current Chromatography
	(A)	(1) and (3)	correc	et (B) (2) and (3) correct
	(2)	(4) only co	rrect	(D) (1) only correct
	(E)	Answer no	t knov	wn

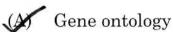
165.	Choo	se the wrong match type:								
	Whic	h of the foll	h of the following is incorrectly paired:							
	(i)	RFLP	_	Restriction F	Fragment Length Polymorphism					
	(ii)	RAPD	0 -	Randomly Ar	nplii	ied Polymorphic DNA				
	(iii)	AFLP	3 	Amplified Le	ngth	Polymorphism				
	(iv)	FISH		Fluorescence	in s	itu hybridization				
	(A)	(i) and (ii)			(B)	(iii) and (iv)				
	(C)	(i), (ii), (iv)			D	None of the above				
	(E)	Answer no	t knov	vn						
166.	Find	the statem	ent re	lated to centri	fuga	tion:				
	(i)	Follows sedimentation principle								
	(ii)	Used to separate sub cellular organelles								
	(iii)	Centrifugal force is operated when the rotor rotates at greater speed along with gravitational pull								
	(A)	(i) and (ii)	only		(B)	(i) and (iii) only				
9	CX	(i), (ii) and	(iii)		(D)	(ii) and (iii) only				
	(E)	Answer no	t knov	wn						
167.	Whic	h rotor typ	e is be	st suited for p	ellet	ing bacterial cells quickly?				
	(A)	Fixed angl	le roto	r	(B)	Swinging – Bucket rotor				
	(C)	Vertical ro	otor		(D)	Continuous slow rotor				
	(E)	Answer no	t knov	vn						

168.		the state a scopy:	bout	osmium	tetra	oxide	used	in	electron
	(A)	Fixing agent			(B) M	Iordant			
	(C)	Staining agen	t		(D) P	recipita	itor		
	(E)	Answer not kr							
					E.				
169.		sectioning of we through	voody	materials	for hi	sto enz	ymolog	gical	study is
	(A)	Rotary microt	ome		(B) S	ledge m	icrotoi	ne	
	(C)	Cryotome				ocking			
	(E)	Answer not kr	nown						
170.	What	is the purpose	e of cro	oss-linking	g prote	ins dur	ing fixa	ation	1?
	(A)	To increase th	e size	of cells		И.			
8	B	To stabilize ce	ll stru	ctures					
	(C)	To destroy cell	l mem	branes					
	(D)	To increase th	e rate	of cell div	ision				
	(E)	Answer not kr	nown						
171.	The o	lye eosinate of	methy	ylene blue	belong	gs to wh	ich gro	oup?	
	(A)	Acidic dye			(B) B	asic dy	e		
	C	Neutral dye			(D) C	xazine	dye		
	(E)	Answer not kn	nown						

172. Assertion [A]: Carnoy's fluid is most commonly used for the fixation of the nucleoproteins and chromosomes. It has combined properties of Ethanol and acetic Reason [R] acid. [A] is true but [R] is false (A) Both [A] and [R] are true, and [R] is the correct explanation (C) [A] is false, [R] is true (D) Both [A] and [R] are true but [R] is not the correct explanation of [A] is correct (E)Answer not known 173. The tissue, cell or cellular component taking acidic stains is known Acidiphilic tissue (B) Basiphilic tissue Metachromasia (D) Mordant (C) (E)Answer not known 174. What is the typical thickness range of sections produced by an ultramicrotome? 30 - 70 nm $1 - 10 \, \mu m$ (A) (D) 500 - 1000 nm(C) 1-5 mm(E) Answer not known 175. Which of the following is not a component of basic polarizing microscope? (A) Polarizer (B) Analyzer Excitation filter (C) Rotating stage

(E)

Answer not known


176. The rapid freezing of tissues is achieved by placing the livi in isopentane cooled upto by liquid nitrogen.					
	(A)	−130°C to − 140°C	(B) −140°C to − 150°C		
		−150°C to − 160°C	(D) -160°C to - 190°C		
	(E)	Answer not known			
177.	such	(T) (T)	ecific macromolecule or structure ne frequency used procedure is to		
	(A)	Alexa 568	(B) Cy 5		
	(2)	Gold particle	(D) Osmium tetraoxide		
	(E)	Answer not known			
178.		n the power of ocular lens is nagnification observed are	10 X and objective lens is 20 X,		
	(A)	30 times	(B) 20 times		
	S	200 times	(D) 2000 times		
	(E)	Answer not known			
179.		ch of the following statements OVER TEM in electron micros	are true about the advantages of scopy?		
	(i)	Image formation is achieved v	vithout objective lens.		
	(ii)	Small spot size reduces the sp	herical aberration.		
	(iii)	Elaborate sample preparation	is not a prerequisite		
	(A)	(i) and (ii) only	(B) (ii) and (iii) only		
	(C)	(i) and (iii) only	(D) (i), (ii) and (iii)		
	(E)	Answer not known			
		y and 64 ntomology			

180.	80. In microscopy, the limit of ability of the lens system to distinguish two-point objects, separated above a minimum distance is called as					
	(A)	Diff	raction	1		(B) Magnification
	(C)	Res	olving	power	•	(D) Image formation
	(E)		wer no			
181.		Bioi aryot		atic t	ool us	ed to identify introns and exons of
÷.	(A)	Gen	e Mar	k		(B) BLASΤ - 2
	(0)	Gen	e Scar	L.		(D) Gene Tree
	(E)	Ans	wer no	t kno	wn	,
182.		ch co bols.	orrectly	y seq	uences	and nomenclature based on IUPAC
	(a)	Alph	abet		1.	Gene
	(b)	Word	ls		2.	Nucleotide
	(c)	Sente	ence		3.	Chromosome
	(d)	Chap	ter		4.	Operon
		(a)	(b)	(c)	(d)	
	(A)	1	2	3	4	· · · · · · · · · · · · · · · · · · ·
	P	2	1	4	3	
	(C)	1	3	4	2	
	(D)	2	4	3	1	*
	(E)	Ans	wer no	t kno	wn	

183.	Match the following type
	/-\ C-1-1-1-1-1-1-1

- (a) Carbohydrate data base
- (b) 3D-structure database
- (c) Genome database
- (d) Model organism database
- 1. PDB
- 2. Cash Bank
- 3. E.Coli Genome project
- 4. GOLD

- (E) Answer not known
- 184. A fragment based method used to construct the structural alignments on the basis of patterns of contact similarity between successive hexapeptides is
 - (A) DALI Distance Matrix Alignment
 - SSAP Sequential Structure Alignment Programme (B)
 - (C) Motif – Profile Analysis
 - (D) T-Coffee
 - (E) Answer not known
- 185. A database of terms that classify protein functions, processes and sub cellular locations are shown in

- (B) OMIM
- (C) PubMed
- (D) BLAST
- (E)Answer not known

186. Choose the right expansion of Abbreviation

- 1. BLAST Basic Local Alignment Search Tool
- 2. SRS Simple Retrieval System
- 3. MMTK Man Made Tool Kit
- 4. NCBI National Center for Biotechnology Information
- (A) 1 only
- (B) 1 and 2 are correct
- 1 and 4 are correct
- (D) 2 and 4 are correct
- (E) Answer not known

187. Match the following:

- (a) SWISSPORT
- 1. Liisa Holm and Chris Sander

(b) FSSP

- 2. Thompson, Higgins and Gibson
- (c) FASTA
- 3. Amos Bairoch
- (d) CLUSTAL-W
- 4. D.J. Lipman and W.R. Pearson
- (a) (b) (c) (d)
- (A) 3 2 4 1
- **P** 3 1 4 2
- (C) 1 3 2 4
- (D) 2 1 4 3
- (E) Answer not known

188.	The	square	root	of the	arithmetic	mean	of the	squared	deviations	of
	the	various	item	sis						

(A) Standard deviation

(B) Variance

(C) ANOVA

(D) Standard Error

(E) Answer not known

189. The 't' test used to compare between the

(A) Two sample means

(B) Two sample variance

(C) Positive Skewness

(D) The normal distribution

(E) Answer not known

190. Standard deviation is the

Square root of arithmetic mean of the squared deviation

- (B) Dispersion of sample mean around the total population mean
- (C) Mean of all deviations in a set of data obtained from an average
- (D) Arithmetic mean of the squares of sum of deviations from the mean value of the data
- (E) Answer not known

191. Student's t-Test for a single population showing normal distribution is calculated by

(A)
$$t = \frac{\overline{X}}{\sqrt{n}}$$

(B)
$$t = \frac{\overline{X} - \mu}{S}$$

(C)
$$t = \frac{\overline{X}_1 - \overline{X}_2}{SE}$$

(B)
$$t = \frac{\overline{X} - \mu}{S}$$

$$D t = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

- (E) Answer not known
- 192. When there is a decrease in the values of one variable the variable increases is said to be a
 - (A) Positive correlation
- (B) Negative correlation
- Zero correlation (C)

- (D) None of the above
- (E)Answer not known
- 193. Among the following statements, find the incorrect one
 - Chi-square curve is always positively skewed (1)
 - (2)Chi-square value decreases with the increase in degree of freedom
 - Chi-square is a statistic hypothesis and not a parameter (3)
 - The value of χ^2 (Chi square) lies between zero and infinity (4)
 - (A) (1) only

(P) (2) only

(C) (3) only

- (D) (4) only
- Answer not known (E)

194. Which is TRUE about primary data?

- (1) Data collected by somebody and used by the researcher
- (2) Data collected by the researcher specifically
- (3) Data collected from unreliable sources
- (4) Data collected through interviews
- (A) (1) and (3)

(B) (2) and (4)

(C) (1) and (4)

(D) (2) and (3)

(E) Answer not known

195. Which is not true about Discrete variables?

- (1) The values are countable.
- (2) The values can be in integers or in decimal.
- (3) It has finite number of values.
- (4) It is a qualitative variable.
- (A) (1) and (2)

(B) (1), (2) and (3)

(C) (2) only

(D) (2) and (4)

(E) Answer not known

100	2 6 . 2		0 77		
196	Match	the	toll	OWING	
TOO.	Macci	OLL	TOIL	OWILLS.	

- (a) Histogram
- Circular graph 1.
- (b) Bar diagram
- 2. Bars without gap
- (c) Pie chart
- Cumulative frequency curve 3.
- (d) Ogive
- Bars with gap 4.
- (a) (b) (c)

4

4

1

- 3 (A) 4
- 2 1

(d)

1

- (B) 2
- 3
- 2
- 3 1
- (D)

- 3
- (E) Answer not known

197. A series arranged according to each and every item is called as

Time series (A)

- (B) Discrete series
- (C) Continuous series
- (D) Individual series
- (E)Answer not known

198. Find the suitable method of data collection for sampling

- Population is very large. 1.
- 2. Definite groups of population.
- Indefinite groups of population. 3.
- Small population. 4.
- 2 and 4 (A)

(B) 1 only

1 and 3

- (D) 4 only
- Answer not known

199.	The o	The characteristics by which individuals differ among themselves is								
	(A)	Collection of Data	(B)	Population						
	(C)	Sample of Data	DY	Variable						
	(E)	Answer not known	4							
200.	Data calle	obtained by an investigator	by	performing experimen	its is					
9	A	Primary Data	(B)	Secondary Data						
	(C)	Array Data	(D)	None of the above						
	(E)	Answer not known								