COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POST)

COMPUTER BASED TEST

DATE OF EXAM: 21.07.2025 AN

PAPER - II - CHEMICAL ENGINEERING

(DEGREE STANDARD) (CODE: 405)

1.	The to	least important reason to have a FPP (Fire Prevention Plan) is
	(A)	Prevent loss of life
	(B)	Comply with OSHA
	(C)	Prevent loss of property by fire
	(8)	Eliminate the causes of fire
	(E)	Answer not known
2.	eval	pliance audits calls for employers to certify that they have uated compliance with process safety requirements atleast y years.
	(A)	5 (B) 3
	(C)	4 (D) 2
	(E)	Answer not known
3.		ty behavior refers to the extent to which workers w the safety rules and regulations.
	(A)	Motivational (B) Knowledge
	(C)	Participation (B) Compliance
	(E)	Answer not known
4.	Acco	ording the industrial safety hazards a confined space is
	(A)	A space that is difficult to access
	(B)	A space that is used for storage
	4	A space with limited entry and exit points
	(D)	A space with limited lighting
	(E)	Answer not known

5.	Identify the respiratory personal protective equipment which is under "Air Purifying type" from the given options.										
	(A)	Chemical cartridge type respirator									
	(B)	Air line respirator									
	(C)	SCBA (Self Contained Breathing Apparatus)									
	(D)	Short distance fresh air apparatus									
	(E)	Answer not known									
		¥									
6.		tify the disease that occurs tratus in ear which gives a sen									
	(A)	Convulsions	(B)	Carpal tunnel syndrome							
	(C)	White finger	(D)	Vertigo							
	(E)	Answer not known									
7.		onged exposure to cause cataracts.	radia	ation, which is non-ionizing,							
	(A)	Alpha	(B)	Gamma							
	9	Microwaves	(D)	Infrared							
	(E)	Answer not known									
8.		tify the chemical from the giv	ven o	ptions which is classified as							
	(A)	Sulphur dioxide	(B)	Arsenic							
	(C)	Argon	(D)	Hydrogen cyanide							
	(E)	Answer not known									

9.		ch safety signs are triangu ground and black borders, symb				with	a	yellow
	(A)	Prohibition signs	(B)	War	rning si	gns		
	(C)	Mandatory signs	(D)	Safe	e condit	ion sig	ns	
	(E)	Answer not known						
10.	Perm wate	nissible limit of BOD in dischar	ge o	f effl	uent in	to inla	nd s	surface
	(1)	30 mg/L	(B)	250	mg/L			
	(C)	$150~\mathrm{mg/L}$	(D)	100	mg/L			
	(E)	Answer not known						
11. In the chemical process industries, the term BOD associated with the					OD is	no	ormally	
	(A)	Characterisation of solid waste	es					
	(B)	Organic concentration in Gase	ous	efflu	ients			
	(0)	Characterisation of liquid efflu	ient					
	(D)	Characterisation of Hazardous	s wa	ste				
	(E)	Answer not known						
12.	Identify the most common and economic method of solid was disposal in India							
	(A)	Composting	(B)	San	itary L	and fil	ling	
	(C)	Activated sludge process	(D)	Tric	ekling fi	lters		
	(E)	Answer not known						

13.		tify the gas cleaning devices t ted by a spinning gas stream to		C
	(A)	Electrostatic precipitators	(B)	Fabric filters
	(0)	Cyclone separators	(D)	Settling chambers
	(E)	Answer not known		
14.		ippling deformity calledsh from contaminate		
	(A)	Fluorosis, mercury	(B)	Tai-tai, mercury
	(C)	Minameta, cadmium	(B)	Minameta, mercury
	(E)	Answer not known		
15.	spec colu	an aquifier of sand, having c ific yield 25% volume of wate mn with cross sectional area ed much water could be extracted	r 0.6 _l ual	58 m ³ stored in a saturated to 1.0 m ³ and a depth 2.0 m.
	(A)	$0.5~\mathrm{m}^3$	(B)	$0.4~\mathrm{m}^3$
	(C)	$0.6~\mathrm{m}^3$	(D)	$0.68~\mathrm{m}^3$
	(E)	Answer not known		

16.						erial that gives an idea about visual ad luster of material.						
(a) Mildsteel						is a silvery white metal						
	(b)	Cast i			2.	has a distinctive brownish red colour						
	(c)	Сорре			3.	has a smooth scale with blue/black sheen						
	(d)	Alum	inium		4.	grey and sandy, on rubbing a finger gets blackens						
		(a)	(b)	(c)	(d)							
	(1)	. 3	4	2	1							
	(B)	1	4	3	2							
	(C)	4	3	1	2							
	(D)	4	1	3	2							
	(E)	Ansv	wer no	t know	n							
17.	Wro	ught i	ron is	a suita	able n	material of construction for handling						
	(A)		te acid			(B) Concentrated acidic						
	.(25)	ko	lis and		line	(D) None of these						
	(E)		ver no			(D) Itolie of these						
18.	The	key to	good	oxidat	ion re	esistance of an oxide film is						
	(A)	Low	electri	ical co	nduct	tivity (B) Low electrical resistivity						
	(C)	High	ı electi	rical co	onduc	ctivity (D) High electrical resistivity						
	(E)	Ansv	wer no	t knov	vn ·							

19.		solids which atoms, ions repetitive three dimensional an Crystal Alloys Answer not known	rang (B)	
20.	A gr	id of parallel metal bars set in	an ir	acreased stationary frame is
	(A)	Gyratory screens	(B)	Vibrating screens
	405	Grizzles	(D)	Ideal screen
	(E)	Answer not known		
21.	Mes	h indicates the number of holes	s per	
	(A)	Square inch	(B)	Linear inch
	(C)	Square foot	(D)	Linear foot
	(E)	Answer not known		
22.	large law)	energy required per unit mass e size to 100 µm is 12.7 kWh of the energy to grind the pa m is	ton/	. An estimate (using Bond's
	(A)	6.35 kWh/ton	(B)	18 kWh/ton
	(C)	25.4 kWh/ton	(D)	9.0 kWh/ton
	(E)	Answer not known		
23.	The	main raw material for the mar	ufac	eture of caprolactam is
	(A)	Hexane	(B)	Benzene
	(C)	Methane	(D)	Naphthalene
	(E)	Answer not known		

405 – Chemical Engineering

24.		ch the Anodic Catho Inorga Organ (a) 3 4 1 4 Answ	c inh dic ir anic i ic in (b) 1 2 3	ibito nhibi nhib hibit (c) 4 1 3 2	tors itors ors (d) 2 2 4 1	les 1. 2. 3. 4.	Magnesium salts Mercaptans Phosphates Silicates and hydroxides
25.	5. Which type of corrosion is avoided either by reducing carbon to low value or by the addition of titanium or columbium?						
	(A) (E)	Pitting corrosion Intergranular corrosio				on	(B) Crevice corrosion(D) Cavitation corrosion

- 26. By Alloying, corrosion can be greatly decreased by
 - (I) Increase in Homogeneity of the metal
 - (II) Oxides films are formed on the surface of metals
 - (A) Statement I only true
 - (B) Statement II only true
 - Statement I and II true
 - (D) Statement I and II false
 - (E) Answer not known

27.	A su	itable material for audio and T	V tr	ansformers is	
	(H)	Nickel – Zinc ferrite	(B)	Fe - 4% Si	
	(C)	Fe – 30% Ni	(D)	Very pure Fe	
) te	(E)	Answer not known			
28.		carbon nanotubes are formed neter.	l in	the range of	in
	(A)	0.1 to 1 nm	(B)	1 to 2 nm	
	(D)	2 to 10 nm	(D)	10 to 20 nm	
	(E)	Answer not known			
29.	The	Nano size range is			
	(45)	10 Å	(B)	100 Å	
	(C)	1 Å	(D)	1000 Å	
	(E)	Answer not known			
30.	The	capacity of a belt conveyor dep	ends	upon	
	(A)	Rotational speed of the screw			
	B				
	(C)	Double pitch of its diameter			
	(D)	Intermediate bearings suppor	ted	on the bridges	
	(E)	Answer not known		NAME OF THE PROPERTY OF THE PR	
	\$ \$				

- 31. An alum and copperas are used as a coagulant in filtration and sedimentation namely
 - Aluminium sulphate and ferrous sulphate
 - (B) Filter alum and aspetus oxide
 - (C) Aluminium Sulphate and copper sulphate
 - (D) Alum oxide and bismuth sulphate
 - (E) Answer not known
- 32. For a Newton's law region, the value of the drag coefficient will be
 - 0.44

(B) 0.1

(C) 24/N_{RC}

- (D) $\frac{24}{N_{RC}} + 0.44$
- (E) Answer not known
- 33. The angle between the two hollow cylindrical shells of the V-Blender is
 - (A) $30 45^{\circ}$

(B) $45 - 60^{\circ}$

(C) $60 - 75^{\circ}$

- **(B)** 70 90°
- (E) Answer not known
- 34. Sorting classifier uses a sink and float method to separate particles of differing densities. The separation
 - (A) Depends on the particle size
 - (B) Depends on the difference in the terminal velocities
 - Depends on the difference in the densities of the particle
 - (D) Depends on the centrifugal force
 - (E) Answer not known

- 35. The size of dust particles that can be effectively handled in cyclones varies from
 - (A) 10 to 50 microns

- (B) 5 to 10 microns
- (C) 50 to 100 microns
- (D) 100 to 200 microns
- (E) Answer not known
- 36. Two vectors in an inner product space are said to be orthogonal if their inner product is
 - (A) Three

(B) Two

Zero

- (D) One
- (E) Answer not known
- 37. If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$ the product of BA is
 - (A) 2×3 Matrix

(B) 3×2 Matrix

(C) 3×3 Matrix

- (D) Not defined
- (E) Answer not known
- 38. Evaluate 3A 4B, where $A = \begin{bmatrix} 3 & -4 & 6 \\ 5 & 1 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \end{bmatrix}$
 - $\begin{bmatrix} 5 & -12 & 14 \\ 7 & 3 & 9 \end{bmatrix}$

(B) $\begin{bmatrix} -12 & 14 & 5 \\ 3 & 9 & 7 \end{bmatrix}$

(C) $\begin{bmatrix} 14 & 5 & -12 \\ 9 & 7 & 3 \end{bmatrix}$

- (D) $\begin{bmatrix} 5 & 14 & -12 \\ 7 & 9 & 3 \end{bmatrix}$
- (E) Answer not known

- 39. _____ are the vectors (non-zero) that do not change the direction when any linear transformation.
 - (A) Eigen vector

(B) Rectangular vector

(C) Square vector

- (D) Equal vector
- (E) Answer not known
- 40. The solution of the differential equation $\frac{dy}{dx} = e^{3x-2y}$ is
 - $(A) \quad \ln(3x 2y) = C$

(B) $\frac{e^{3x-2y}}{6} = C$

(e) $\frac{e^{2y}}{2} = \frac{e^{3x}}{3} + C$

- (D) $2e^{2y} = 3e^{3x} + C$
- (E) Answer not known
- 41. The relationship between two variables x and y is linear and the form of equation

$$y = ax + b$$

(B) $y = e^{-ax}$

(C) $\log y = a \log x + b$

- (D) $\ln y = a \log x$
- (E) Answer not known

42. $y = \frac{x}{ax + b}$ in linear form as Y = a + bX where

$$X = \frac{1}{x}, Y = \frac{1}{y}$$

(B)
$$X = \frac{1}{x^2}, Y = \frac{1}{y^2}$$

(C)
$$X = x, Y = y$$

(D)
$$X = \frac{x}{1-x}$$
, $Y = \frac{y}{1-y}$

(E) Answer not known

43. The gas equation $pv^{\gamma} = k$ can be reduced to y = a + bx where

$$(\mathbf{A}) \quad \alpha = \frac{1}{\gamma} \log k, b = -\frac{1}{\gamma}$$

(B)
$$a = \frac{1}{\gamma} \log k$$
, $b = \frac{1}{\gamma}$

(C)
$$\alpha = \gamma \log k, b = \gamma$$

(D)
$$a = -\gamma \log k$$
, $b = \gamma$

(E) Answer not known

44. _____ method is the best method of finding approximate values of both rational and irrational roots of a numerical equation.

(A) Horner's method

(B) Bisection method

(C) Rational method

- (D) Irrational method
- (E) Answer not known

- 45. A differential equation is said to be linear if the dependent variable and its differential coefficients occur only in the _____ and not multiplied together.
 - (A) First degree

(B) Second degree

(C) Third degree

- (D) None of the above
- (E) Answer not known
- 46. The convergence of Gauss-Seidal method is _____ than that in Jacobi's method.
 - More fast

(B) More slow

(C) Slow

- (D) Equal
- (E) Answer not known
- 47. Which of the following equations is parabolic?

$$(A) f_{xy} - f_x = 0$$

$$(B) f_{xx} + 2f_{xy} + f_{yy} = 0$$

(C)
$$f_{xx} + 2f_{xy} + 4f_{yy} = 0$$

(D)
$$f_{xx} + 3 f_{xy} + 2 f_{yy} = 0$$

- (E) Answer not known
- 48. The inverse of Matrix A is written as A^{-1} . The formula for A^{-1} is

(A)
$$A^{-1} = Adj A \times |A|$$

$$A^{-1} = \frac{Adj A}{|A|}$$

(C)
$$A^{-1} = \frac{|A|}{Adj A}$$

- (D) None of the above
- (E) Answer not known

49. Find the inverse of
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & 4 & -4 \end{bmatrix}$$

(A)
$$\begin{bmatrix} -24 & -8 & -12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 24 & 8 & 12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 24 & 8 & 12 \\ -10 & -2 & -6 \\ 2 & 2 & 2 \end{bmatrix}$$

(A)
$$\begin{bmatrix} -24 & -8 & -12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 24 & 8 & 12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 24 & 8 & 12 \\ -10 & -2 & -6 \\ 2 & 2 & 2 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} -24 & -8 & -12 \\ 10 & 2 & 6 \\ 2 & 2 & 2 \end{bmatrix}$$

- (E) Answer not known
- The sum of the diagonal elements of a square matrix is called 50.
 - Non-singular matrix (A)
- (B) Singular matrix

(C) Rank of matrix

- Trace of matrix
- (E)Answer not known
- The relationship between hydrodynamic and thermal boundary 51. layer at a given point along the flat plate depends on which of the dimensionless number.
 - Schmidt number (A)

- (B) Grashoff number
- Reynolds number (C)
- (B) Prandtl number
- (E)Answer not known

- 52. The Reynolds Analogy for tube flow states that Stanton number (st) is equal to the $(f \rightarrow \text{friction factor})$
 - (A) $\frac{f}{2}$

(B) $\frac{f}{4}$

(C) $\frac{f}{6}$

- $\mathcal{D} \int \frac{f}{8}$
- (E) Answer not known
- 53. The expression for logarithmic mean temperature difference $(\overline{\Delta T}_L)$ is given by
 - (A) $\frac{\ln(\Delta T_2 \Delta T_1)}{\Delta T_2 \Delta T_1}$

(B) $\ln \Delta T_2 - \ln \Delta T_1$

(C) $\Delta T_2 - \Delta T_1$

- $\frac{\Delta T_2 \Delta T_1}{\ln\!\left(\frac{\Delta T_2}{\Delta T_1}\right)}$
- (E) Answer not known
- 54. Hot air at 80°C flows over a surface of area 0.2 m² at 60°C, the convection coefficient being 25 W/m²K. The heat flow is
 - (A) 1000 W

(B) 400 W

(C) 100 W

- (D) 200 W
- (E) Answer not known

55. A square matrix 'A' is called an orthogonal matrix if Where

 A^{-1} = Inverse of A

 A^T = Transpose of A

I = Identity matrix

 $(A) \quad A = A^{-1}$

(B) $A = A^T$

(C) $\frac{A}{A'} = I$

 $A \cdot A' = I$

(E) Answer not known

56. A counter current flow heat exchanger $m_h=3000$ kg/hr, $c_{ph}=2,300$ J/kg.c, $m_c=2400$ kg/hr, $c_{pc}=4,180$ J/kg.c. Find out R=

(A) 0.502

(B) 0.212

(C) 0.700

(D) 0.688

(E) Answer not known

57. Nusselt number (Nu) is

hD/K

(B) h/DK

(C) $K/\delta C_P$

(D) V/α

(E) Answer not known

58. 2-4 shell and tube heat exchanger means _____

2 shell side pass and 4 tube side pass

- (B) 4 shell side pass and 2 tube side pass
- (C) 2 shell side pass and 2 tube side pass
- (D) 4 shell side pass and 4 tube side pass
- (E) Answer not known

- 59. Identify the correct statement for compact heat exchangers.
 - (A) the heat exchangers having large surface area per unit weight
 - (B) the heat exchanger having small surface area per unit weight
 - the heat exchanger having large surface area per unit volume
 - (D) the heat exchanger having small surface area per unit volume
 - (E) Answer not known
- 60. Rate of heat flow through a thick walled cylinder is given by equation

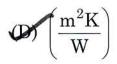
$$Q = \frac{(2\pi L)K(T_1 - T_2)}{\ln(r_2/r_1)}$$

- (B) $Q = (2\pi L)K(T_2 T_1) \ln(r_1/r_2)$
- (C) $Q = (2\pi L)K(T_1 T_2)(r_1 r_2)$

(D)
$$Q = \frac{2\pi L \ln\left(\frac{r_2}{r_1}\right)}{K(T_1 - T_2)}$$

- (E) Answer not known
- 61. In natural convection, fluid movement is due to
 - (A) changes in fluid pressure produced by external work
 - density differences which provide the body force required to move the fluid
 - (C) elastic forces
 - (D) surface tension forces
 - (E) Answer not known

00	CL C D L		1' 11	C 1	4
62.	Stefan-Boltzmann	law is	applicable	ior neat	transier by


- (A) Conduction
- (B) Convection
- Radiation
- (D) Combined conduction and convection
- (E) Answer not known

63. Choose the unit in SI system for the dirt flow or fouling factor in the given options

(A) W/m^2K

(B) Wm^2K^{-1}

(C) $\frac{WK}{m^2}$

(E) Answer not known

64. Which law states that, at temperature equilibrium, the ratio of the total radiating power of any body to its absorptivity depends only upon the temperature of the body?

(A) Planck's Law

- (B) Kirchoff's Law
- (C) Stefan Boltzmann Law
- (D) Newton's Law
- (E) Answer not known

- (A) Compression ratio is below 2
- (B) Compression ratio is around 1.2-1.6
- Compression ratio is 10 or more
- (D) Compression ratio is around 1.8-1.9
- (E) Answer not known

- 66. The maximum efficiency of reciprocating compressor is
 - (A) 80% to 85%

(B) 70% to 80%

85% to 90% (C)

- (D) 90% to 95%
- (E)Answer not known
- The empirical relation that can be used for estimating the function 67. factor from the Reynolds number for turbulent flow is
 - (A) $f = 0.099/(N_{\text{Re}})^{2.15}.N_{\text{Pr}}$ (B) $f = \frac{0.078}{(N_{\text{Re}})^{0.25}}$
- - (C) $f = 0.127/(N_{\text{Re}})^{1.25}$
- (D) $f = 0.927/(N_{\text{Re}})^{2.12}$
- (E) Answer not known
- Reynolds number is the ratio between 68.
 - (A) Pressure to the inertia force
 - Inertia force to the gravitational force (B)
 - Inertia force to the surface tension
 - Inertia force to the viscous force
 - Answer not known
- 69. The reciprocating pump is generally employed for
 - (A) Pressure system

(B) Pneumatic pressure system

Hydrolytic (C)

- (D) Non-Hydrolytic
- Answer not known (E)

70.	Reynold's	number	is	defined	as	the	ratio	of
	Troj more							

- (A) Inertia force/pressure force
- Inertia force/viscous force
- (C) Viscous force/gravity force
- (D) Inertia force/surface tension force
- (E) Answer not known

71. Conservation of mass equation for a steady flow compressible fluid is represented by

where

 $\rho = \text{density}$

A = Area

V = Velocity

$$(A) \quad \rho_1 A_1 = \rho_2 A_2$$

(B)
$$A_1V_1 = A_2V_2$$

(C)
$$\rho_1 A_1 / V_1 = \rho_2 A_2 / V_2$$

(b)
$$\rho_1 A_1 V_1 = \rho_2 A_2 V_2$$

(E) Answer not known

72. What is the CGS unit of viscosity?

(A) Pascal

(B) Dyne S/cm²

(C) Dyne² S^2/cm^2

- (D) Poise
- (E) Answer not known

73. Dynamic similarity is the

- (A) Similarity of motion
- (B) Similarity of length
- Similarity of forces
- (D) Similarity of shape
- (E) Answer not known

74. Relation between skin friction and wall shear is given by equation

(A)
$$h_{fs} = \frac{4D}{S\Delta L} \tau_w$$

(B)
$$h_{fs} = \frac{4\tau_w}{SD}\Delta L$$

(C)
$$h_{fs} = \frac{2\tau_w r_w}{S} \Delta L$$

(D)
$$h_{fs} = \frac{3}{4} \frac{SD}{\tau_w} \Delta L$$

- (E) Answer not known
- 75. The Bernoulli's equation expresses the relationship between
 - Static pressure . Potential energy
 - (B) Static pressure. Kinetic energy
 - (C) Vacuum pressure. Internal energy
 - (D) Vacuum pressure . Kinetic energy
 - (E) Answer not known
- 76. The two principal disturbances that are measured for feed forward control of a heat exchanger are
 - (A) Liquid composition and flow rate of feed water
 - (B) Liquid composition and liquid inlet temperature
 - Liquid flow rate and liquid inlet temperature
 - (D) Liquid flow rate and liquid outlet temperature
 - (E) Answer not known
- 77. Which type of control is used to accelerate the response of a controlled process?
 - Proportional

(B) Integral

(C) Derivative

- (D) None of the above
- (E) Answer not known

78.	In a the	feedback controlled system th	ne controller gets its input from
	(A)	Load variable	(B) Manipulate variable
	505	Controlled variable	(D) Inferred variable
	(E)	Answer not known	
79.	subje		gain and time constant 'T' is s of frequency $\omega = 1/T$. The
	(A)	1	(B) 0.5
	(6)	$1/\sqrt{2}$	(D) 0.25
	(E)	Answer not known	
80.		ct the temperature sensor wh temperature of about 2500°C	ich can be used to measure the
	(A)	Thermo couple	(B) Resistance thermometer
	(en	Optical pyrometer	(D) Bimetallic thermometer
	(E)	Answer not known	
81.	Selec		an be used to determine vacuum
	(A)	Bourdon gauge	(B) Pirani gauge
	(C)	Thermocouple	(D) Thermistor
	(E)	Answer not known	

82.	A 600 V voltmeter is specified to be accurate with in $\pm 2\%$ at full scale calculate the limiting error when the instrument is used to measure a voltage is 250 V.										
	(A)	6%	(B)	4.8%							
	(C)	8%	(D)	6.2%							
	(E)	Answer not known									
83.	Select the temperature sensor which can be used to detect the temperature of the moving object.										
	(A)	Thermocouple	(B)	Resistance thermometer							
	(C)	Bimetallic thermometer	(D)	Radiation pyrometer							
	(E)	Answer not known									
84.	In a closed loop system the measured value of the controlled variable is returned to a device is called as										
	(A)	Controller referred	(B)	Comparator							
	(C)	Final control element	(D)	Measuring element							
	(E)	Answer not known									

- (A) Total revenue and total cost line
- (B) Total cost and variable cost
- (C) Variable cost and fixed cost line
- (D) Fixed cost and total cost line
- (E) Answer not known

86.	6. A drier today costs Rs. 2,21,000. The estimated inflation rate expected to be: Ist year = 3.5%, IInd year = 4.2%, IIIrd year = What is the cost of that drier 3 years hence?			ar = 4.2%, III rd year = 4.7%.
	(A)	Rs. 2,54,900	(B)	Rs. 2,94,500
	(C)	Rs. 2,49,000	(D)	Rs. 2,49,500
	(E)	Answer not known		
87.	Utili	ties cost in the operation	of chemica	al process plant comes under
	(A)	Plant overhead cost	(B)	Fixed charges
	(4)	Direct production cost	(D)	General expenses
	(E)	Answer not known		
88.	Dem	and for a utility in plant	increases,	the cost of unit
	(A)	Increase	(B)	Remain same
	(6)	Decrease	(D)	Can't predictable
	(E)	Answer not known		
89.		method to renient from a practic ramming.	8	ole in theory and its not of view in non linear
	(A)	Simplex method	(B)	Barrier method
	(0)	Direct substitution meth	nod (D)	Newton method
	(E)	Answer not known		
90.	The	term hysterisis is associa	ted with	
	40	On-Off Control	(B)	P-I Control
	(C)	Feed Forward Control	18 18	Ratio Control
	(E)	Answer not known		H
405 –	Chen	nical Engineering	26	

- 91. The time required for the response to first reach its ultimate value is
 - (A) Time Constant

(B) Response Time

Rise Time

- (D) Period of Oscillation
- (E) Answer not known
- 92. The open loop transfer function of a unity feed back control system is $\frac{30}{S(S+1)(S+T)}$ where T is a variable parameter. The closed loop system will be stable, for all values of
 - (A) T > 0

(B) 0 < T < 3

(C) T > 5

- (D) 3 < T < 5
- (E) Answer not known
- 93. Which of the following is not a characteristics of open loop system?
 - (A) it is inaccurate

- (B) it is economical
- (C) it has small bandwidth
- it has feedback element
- (E) Answer not known
- 94. If a gain margin is unity or less than 1, it indicates system will be
 - (A) Stable

(B) Unstable

(C) Step

- (D) Sinusoidal
- (E) Answer not known

95. Name the type of controller variables and take corrective act				
	(4)	Feed forward	(B)	Feed backward
	(C)	Cascade	(D)	Ratio control
	(E)	Answer not known		
96.	96. A stray cattle on the rail track caused the derailment of good Cattle is the cause, the owner of the cattle is			
	(A)	Casual responsible		
	(B)	Morally responsible		
	(C)	Both moral and casual respon	sible	9
	(D)	Legally responsible		
	(E)	Answer not known		
97.	Max	imum period for which an unde	er tri	al prisoner can be detained
	(A)	By public prosecutor		
	(B)	By magistrate		
	(C)	By public		
	(B)	By public prosecutor and Nexo	on to	be recorded in writing
	(E)	Answer not known		
98.	02	tify the loyalty related to fulf loyee.	ill o	nes contractual duties to an
	(4)	Agency loyalty	(B)	Identification loyalty
	(C)	Misguided loyalty	(D)	Attitude loyalty
	(E)	Answer not known		

99.		The Engineers acted as expert-witnesses are likely to abuse their position in the given manner is				
	(A)	Non Hired Guns	(B) Money Bias			
	(C)	No Ego Bias	(D) Non Sympathy Bias			
	(E)	Answer not known				
100	Valu	e-Guided advocates are				
100.	Valu		/D) II			
	(A)	Honest and Independent	(B) Honest			
	(C)	Independent	(D) All the above			
	(E)	Answer not known				
101.	Conf	lict of interests state with				
	(A)	Design Vs Operation				
	B	Public safety Vs Loyalty to the	company			
	(C)	Maintenance Vs User manual				
	(D)	Company Vs Administration				
	(E)	Answer not known				
100	G 11					
102.			through professional society can			
		play a great role in the promotion and establishment of principles and practices towards.				
	(A)	Fair employment and exploita	tion			
	(B)	Collective action be resorted				
	(C)	Collective bargaining by engin	eer			
	(D)	Assessment on unionism				
	(E)	Answer not known				

103.	Expa	and NSPE.			
	(4)	National Society of Professional Engineers			
	(B)	National Scheme of Professional Engineers			
	(C)	National Society of Profession	al Ethics		
	(D)	National Scheme of Profession	nal Ethics		
	(E)	Answer not known			
104.	Proci	castination is the			
	(A)	Involvement	(B) Thief of time		
	(C)	Commitment	(D) Experimentation		
	(E)	Answer not known			
105.		ry to explain about context-ori	iented and ethics of care and the		
	(A)	Kohlberg's Theory	(B) Carol Gilligan's Theory		
	(C)	Logical Theory	(D) Moral Theory		
	(E)	Answer not known			
100	TZ 1 1		1		
106.	Kohl	berg's theory is based on the st			
	(A)	Men and Women	(B) Men		
	(C)	Emotional	(D) Future Focus		
	(E)	Answer not known			

107.	Name the source of values that is comprised of a set of traditions which guide the routine behaviour and decision-making of an individual.				
	(4)	Culture	(B) Personal Factors		
	(C)	Life experiences	(D) Religion		
	(E)	Answer not known			
108.		ber of developments of hus son Kohlberg is	man thought distinguished by		
	(A)	2	(B) 1		
	(C)	3	(D) 4		
	(E)	Answer not known			
			127		
109.	Ethic	cal theories are useful in			
	(A)	Mistakes will ensure success			
	(B)	Justifying professional obligat	tions and decisions		
	(C)	Empowered by rules and laws	3		
	(D)	Answerable for meeting specif	fic obligations		
	(E)	Answer not known			
110.	follov		oral development do individuals change them if they do not serve		
	(A)	Punishment and obedience or	ientation		
	(B)	Conventional level			
	4en	Social contract orientation			
	(D)	Post-conventional level			
	(E)	Answer not known			

111.	. In ion exchange, electrically charged thin film composite layer is				
	(A)	PP	(B)	PS	
	(2)	Polyester	(D)	PVC	
	(E)	Answer not known			
		*			
112.		th technique is used for the trope?	e de	ehydration of ethanol-water	
	(A)	Microfiltration	(B)	Electrodialysis	
	(C)	Ultrafiltration	(D)	Pervaporation	
	(E)	Answer not known			
113.	Loca	l mass transfer co-efficients ca ugh,	ın be	e measured with relative ease	
	(1)	Sublimation			
	(2)	Dissolution of solids			
	(3)	Saturation of solids		0	
	(A)	Only (1)	(B)	Only (1) and (2)	
	(C)	Only (2)	(D)	Only (2) and (3)	
	(E)	Answer not known			
114.	In su	per critical extraction solvent	sele	ction depends on the	
	(A)	Feed mixture	(B)	Separating component	
	(C)	Temperature of feed	(D)	Pressure of the feed	
	(E)	Answer not known			

115.		In pervaporation with hollow-fiber modules of silicone rubber can be used for the removal			
	(A)	VOCs	(B)	VIC	
	(C)	Halides	(D)	Inorganic compounds	
	(E)	Answer not known			
116.		f be the molal fraction of drawn as vapour. Then lt $(1-f)$			
	(A)	Mole fraction of residue	(B)	Molal fraction of vapour	
	40	Molal fraction of feed	(D)	Residue	
	(E)	Answer not known			
		66.			
117.		branes are fabricated into spir hieve	al w	ound or hollow fiber modules	
	(A)	a high selectivity			
	(B)	a high surface area per unit vo	olum	e	
	(C)	a high permeability			
	(D)	a good mass transfer flux			
	(E)	Answer not known			
118.	and t	al porous membranes, pores m therefore cylindrical pores are s oriented at 45°C to the surface Ergun Darcy Answer not known	replace. The	aced by a bundle of capillary	

	The flux per unit membrane area depends on an effective diffusivity De, that is,				
(A)	Lower than the pore diffusivity				
(B)	Higher than the pore diffusiv	vity			
(C)	Equal to the pore diffusivity				
(D)	Zero pore diffusivity				
(E)	Answer not known				
120. At th	he liquid surface, the concentr	vation of the dissolved gas in $ au_{Aj}$ in			
equi	librium with the pressure of A	A in the gas,			
(A)	Since $\tau_{Aj} > \tau_{AD}$	(B) Since $\tau_{Aj} < \tau_{AD}$			
(C)	Since $\tau_{Aj} = \tau_{AD}$	(D) Since $\tau_{Aj} \neq \tau_{AD}$			
(E)	Answer not known				
	121. A method used for softening of water and the production of deionised or demineralised water is				
(D)	Ion exchange technique usin				
(B)	Ion exchange technique usin				
(C)	Molecular adsorption metho				
(D)	Molecular desorption method	1			
(E)	Answer not known				
men	122. Many large-scale application of use ion-selective membranes and a potential gradient to speed migration of ion through the membranes.				
(A)	Electrodialysis	(B) Ion exchanger			
(C)	Pervapouration	(D) Chromatography			
(E)	Answer not known				
405 – Cher	nical Engineering 34				

123.	In Ion exchange technique the weak acid cation exchange resin is used for the TDS feed level			
	(A)	3000 mg/l	(D) > 3000 mg/l	
	(C)	< 3000 mg/l	(D) Not affect the resin	
	(E)	Answer not known		
124.		technique is based ounds in a mixture towards a s	on differences in affinities of the suitable adsorbent.	
	(A)	Ion exchange	(B) Chromatography	
	(C)	Membrane	(D) Dialysis	
	(E)	Answer not known		
125.	The experimental data for evaporation of several liquids in wetted wall towers are correlated in the form of			
	(A)	$Sh = 0.23 Re^{0.81} Pr^{0.33}$	(B) $Sh = 0.023 \text{ Re}^{0.33} \text{ Pr}^{0.81}$	
	(C)	$Sh = 0.023 Re^{0.81} Se^{0.33}$	$\text{Sh} = 0.023 \text{ Re}^{0.81} \text{ Se}^{0.44}$	
	(E)	Answer not known		
126.	Unde given	er steady-state condition, the as, $J_A = -D_{AB} \frac{\partial C_A}{\partial Z}$. The unit	Fick's first law of diffusion is of diffusion co-efficient (D_{AB}) is	
	(A)	m/s^2	(B) m/s	
13	(e)	m^2/s	(D) kg/m ³	
	(E)	Answer not known		

127.	Diffu	Diffusivity of gases can be estimated using				
	(A)	Donhaque equation	(B)	Chapman Enskog equation		
	(C)	Virial equation	(D)	Stokes Einstein equation		
4	(E)	Answer not known				
128.		nterphase mass transfer of connected so that various stre d	_	- 1988 - 1984 -		
	(A)	Counter current	(B)	Cocurrent		
	(2)	Cascades	(D)	Batch processes		
	(E)	Answer not known				
129.	The ן	product of Reynolds number a	nd Sc	hmit number is		
	SAS	Peclet number	(B)	Prantl number		
	(C)	Nusselt number	(D)	Sherwood number		
	(E)	Answer not known				
130.	Rota	ry Dryer widely used for dryin	g the			
	(1)	Salt, sugar				
	(2)	Granular and crystalline mat	erial	S		
	(3)	Liquid compounds				
	(A)	Only (1)	(B)	Only (2)		
	(C)	Only (3)	DY	Only (1) and (2)		
	(E)	Answer not known				

131.	In view of heat sensitivity of solids, co-current operation will be used. The outlet gas temperature is found from equation for adiabatic drying. Assume the number of transfer unit (N_t) is 1.8 The inlet wet-bulb temperature T_{wb} is 102°F. The inlet gas temperature, T_{hb} is 260°F. What is the outlet gas temperature?				
	(A)	137°F	(B)	130°F	
	(C)	132°F	(D)	170°F	
	(E)	Answer not known			
132.	Which dryer is suitable for drying pharmaceutical products?				
	(A)	Pan dryer	(B)	Rotary dryer	
	(C)	Infra red dryer	(D)	Film drum dryer	
	(E)	Answer not known			
133.	. The relative Humidity is the ratio of the partial pressure of the vapour to the vapour pressure of the liquid at the				
	(A)	Gas temperature	(B)	Vapour temperature	
	(C)	Gas pressure	(D)	Vapour pressure	
	(E)	Answer not known		*	

134.	Choose the right answer from the apparent adsorption of a given solute						
	(1)	(1) Depends upon the concentration of solute					
	(2)	Depends upon it temperature					
	(3)	Depends upon it solvent					
	(4)	Types of adsorbent					
	(A)	Only (1)	(B)	Only (1) and (2)			
	40)	Only (1), (2), (3) and (4)	(D)	Only (3) and (4)			
	(E)	Answer not known					
135.	5. The economics of absorption in a counter current column, the driving force for mass transfer is Y – Y*, which is proportional to the vertical distance between the operating line and the line.						
	(A)	Equilibrium line	(B)	Saturated line			
	(C)	Adiabatic line	(D)	Sensible line			
	(E)	Answer not known					
136.	An emf of the order of mV is generated when two solutions of different hydrogen ion concentration are separated by a thin wall. This is the working principle of						
	(A)	pH meter	(B)	Polarimeter			
	(C)	Chromatography	(D)	Polarograph			
	(E)	Answer not known					

- 137. The differential form of the mole balance equation in terms of catalyst weight for a packed-bed reactor is given by _____ for the reaction $2A \rightarrow B + C$. (second order reaction)
 - (A) $FAO = \frac{dW}{dX} = -r'_A$
- $FAO = \frac{dX}{dW} = -r'_A$
- (C) $FAO = \frac{dW}{dX} = -r_A''$
- (D) $FAO = \frac{dX}{dW} = -r_A''$
- (E) Answer not known
- 138. The packed bed contractors use _____ size of solid particles.
 - (A) Large

(B) Small

(C) Fine

- (D) Coarse
- (E) Answer not known
- 139. As per Geldart classification, D type solids in bubbling fluidized bed reactor will behave as
 - (A) Cohesive

(B) Sand like

Spoutable

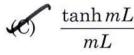
- (D) Aeratable
- (E) Answer not known
- 140. Non-ideal flow patterns in process equipment, such as heat exchangers, packed columns and reactors, _____ the performance of the unit.
 - (A) rapidly increases
 - (B) lowers
 - (C) increases
 - (D) decreases and then increases
 - (E) Answer not known

141.	The unit for space time and space velocity is				
	(1)	time, time-1	(B)	time ⁻¹ , time	
	(C)	time, time	(D)	time ⁻¹ , time ⁻¹	
	(E)	Answer not known		*	
142.		ch among the following state icient (D) represents this sprea			
	Optio	on 1 : Large D means rapid spr	eadi	ng of the tracer curve.	
	Optio	on 2 : D = O means slow spread	ling		
	(1)	Option 1 only true	(B)	Option 2 only true	
	(C)	Option 1 and 2 is true	(D)	Option 1 and 2 is false	
	(E)	Answer not known			
143.		slow catalyst decay, the idea o			
		the temperaturion remains constant.	are i	n such a way that the rate of	
	(Mac)		(D)	Dagwaaga	
9	(C)	Increase Panidly decrease	` '	Decrease Functionally decrease	
	(C) (E)	Rapidly decrease Answer not known	(D)	Exponentially decrease	
	(11)	Allswer hot known			
144.		resistance effects from exulus (M_W) with thick modulu			
	(A)	$M_W = M_T^2 / \varepsilon$	(B)	$M_W = M_T \varepsilon^2$	
	(C)	$M_W = arepsilon$ / M_T^2	(D)	$M_W = M_T arepsilon^2 \ M_W = M_T^2 arepsilon$	

(E)

Answer not known

145.	5. Impurity in the feed may deposit on the catalyst and deactivate t surface is called as deactivation.					
	(A)	Parallel	(B)	Side-by-side		
	(C)	Series	(D)	Independent		
	(E)	Answer not known				
146.	The	shell model of poisoning of cata	llyst	pellet will occur in case of,		
	(A)	No pore resistance	(B)	Very low pore resistance		
	(2)	Very strong pore resistance	(D)	Medium pore resistance		
	(E)	Answer not known	385 70	-		
147.	In a	dispersion model, the vessel	disp	ersion number $\frac{D}{uL} \to \infty$, the		
		able flow is ;				
	(A)	Plug flow	(B)	Mixed flow		
	(C)	Bubble flow	(D)	Back mix flow		
	(E)	Answer not known				
148.	148. A mechanism in which the reaction between an adsorbed molecule and a molecule in the gas phase occurs is called as					
	(A)	Langmuir-Hinshelwood kinet	ics			
	(B)	Single-site mechanism				
	405	Eley-Rideal mechanism				
	(D)	Dual-site mechanism				
	(E)	Answer not known				


- 149. As per transition theory, which one of the following reduces the energy barrier in a reaction path?
 - (A) Intermediates

(B) Products

Catalyst

- (D) Reactants
- (E) Answer not known
- 150. The expression for effectiveness factor for a single cylindrical porous catalyst with first order reaction is
 - (A) $\frac{mL}{\cosh mL}$

(B) $\frac{mL}{\tanh mL}$

- (D) $\frac{mL}{\sinh mL}$
- (E) Answer not known
- 151. Match the typical industrial reaction with their space times.
 - (a) $C_2H_6 \rightarrow C_2H_4 + H_2 (PFR)$
- 1. 4.5 s
- (b) $C_6H_5CH_2CH_3 \rightarrow C_6H_5CH =$ $CH_2 + H_2(PBR)$
- 2. 1 s

 $3. \quad 0.2 \text{ s}$

- $CH_2 + H_2(FDR)$
- (c) $CO + H_2O \rightarrow CO_2 + H_2 (PBR)$
- (d) Catalytic cracking (PBR)
- 4. 1s < e < 400 s
- (a) (b) (c) (d)
- (A) 4 2 3 1
- **(B)** 2 3 1 4
- (C) 3 1 4 2
- (D) 1 4 2 3
- (E) Answer not known

- 152. The half life period of a first order reaction is given by (Where, K = rate constant)
 - (A) 1.5 K

(B) 2.5 K

 $\frac{0.693}{K}$

- (D) 6.93 K
- (E) Answer not known
- 153. For an irreversible consecutive unimolecular type first-order reactions in series, $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ the time at which the maximum concentration of R occurs is given by
 - (A) $t_{\text{max}} = \frac{k_1 k_2}{\ln(k_1 / k_2)}$
- (B) $t_{\text{max}} = \frac{k_2 k_1}{\ln(k_2/k_1)}$

 $t_{\text{max}} = \frac{\ln{(k_2/k_1)}}{k_2 - k_1}$

- (D) $t_{\text{max}} = \frac{\ln(k_1/k_2)}{k_1 k_2}$
- (E) Answer not known
- 154. Rate of chemical reaction is not influenced by the
 - (A) Catalyst
 - (B) Temperature
 - (C) Reactants concentration
 - Number of molecules of reactants taking in the reaction
 - (E) Answer not known
- 155. Isothermal liquid phase irreversible first order reaction is carried out in a CSTR. The residence time is 5 min and the rate constant of the reaction is 2 min⁻¹. What is the conversion obtained in a CSTR?
 - (A) 65%

(B) 75%

(C) 80%

- 91%
- (E) Answer not known

156.	Hydrochloric acid is often used in industry for		
	(A)	Fertilizer	
	(B)	Cooling Industrial Machinery	
	(2)	Steel pickling	
	(D)	Making perfumes	
	(E)	Answer not known	
157.	Tripl with	e superphosphate is manufac	ctured reacting phosphate rock
	(A)	CO_2	(B) H_2SO_4
	(e)	$\mathrm{H_{3}PO_{4}}$	(D) HNO ₃
	(E)	Answer not known	
158.	Sylvi	nite is a mixture of	
	(A)	Sylvite and halide	
	(B)	Quartz and halide	
	(C)	Sylvite and Quartz	
	(D)	Limestone and Quartz	
	(E)	Answer not known	
159.		-	production higher amount of
	conve	ersion can be obtain?	
	(A)	Claude dupoint process	(B) Casale
	(C)	Haber	(D) Kellogg
	(E)	Answer not known	

160.	The material used to give bluish - green coloration to glass is					
	(A)	Nio	(B)	$ m F_eO$		
	(C)	FeSo_4	(D)	CdS		
	(E)	Answer not known				
161.	Whic	h residue of petroleum refinery	y pro	cess is used as electrodes?		
	W	Petroleum coke	(B)	Ammonia		
	(C)	Wax	(D)	Fuel oil		
	(E)	Answer not known				
162.	Ample supply of potassium in the soil helps in					
	(A)	Development of stems and lea	ves			
	(B)	Accelerating seeding				
	(0)	To prevent disease				
	(D)	Early stages of plant growth				
	(E)	Answer not known				
163.	Whic	h of the following drugs is mad	le fro	om vegetables?		
	(A)	Insulin	(B)	Quinine		
	(C)	Aspirin	(B)	ATS		
	(E)	Answer not known				

164.	In th	e sulphate pulp process, the di	gest	er conditions are
	(A)	120 – 130°C and 5 atm		
		120 – 130°C and 1 atm		
	S\$60 S\$60	75 – 80°C and 15 atm		
	(D)	175 – 180°C and 10 atm		
	(E)	Answer not known		
	\			
165.	Hydr divid	rogenation of edible oils is car	ried	out in the presence of finely
	(A)	Copper	(B)	Nickel
	(C)	Iron	(D)	Hydrogenation
	(E)	Answer not known	2 2	
166.	Duri	ng evaporation of milk, solid co	nter	nt increases from 8.6% to
	W	45%	(B)	65%
	(C)	75%	500000	85%
	(E)	Answer not known	. ,	
	181 181			
167.		ch is a high polymer carbohydr e form of granules of	ate	occurring in grains and roots
	(A)	$1-25 \mu \text{ size}$	(B)	3 – 100 μ size
	(C)	125 – 150 μ size	(D)	50 – 100 μ size
	(E)	Answer not known		•
168.	Form	nalin is		
	(A)	10% solution of HCHO	(B)	20% solution of HCHO
	405	37% solution of HCHO	(D)	50% solution of HCHO
	(E)	Answer not known	. /	
405 –	Chem	nical Engineering 46		

169.	Buta	Butadiene and styrene is used for the manufacture of		
	(A)	Polypropylene	(B) SBR	
	(C)	Polyethylene	(D) Synthetic rubber	
	(E)	Answer not known		
	, ,			
170.	techi	reverse process of electrolysis nology as, the chemical energy been combined to produce elec	stored in hydrogen and oxygen	
	(A)	Dual cell	(B) Fuel cell	
	(C)	Microbial cell	(D) Generator	
	(E)	Answer not known		
171.		cells may be classified accord h medium temperature fuel cel	ing to the temperature range in l operates at	
	(A)	25 – 100 °C	(B) 100 – 500 °C	
	(C)	500 − 1000 °C	(D) Above 1000 °C	
	(E)	Answer not known		
	(20) (25)			
172.	S 2	relationship between velocity os	of wind (v) and power generation	
	(A)	$p \infty v^2$	(B) $p \infty v$	

(D) $p \propto \sqrt{v}$

 $p \propto v^3$

Answer not known

(E)

173.	Which isotope of hydrogen is called as heavy hydrogen?				
	(A)	Protium	(B)	Deuterium	
	(C)	Hydrogen	(D)	All of the above	
	(E)	Answer not known		14	
174.		sive, Spinning formations of willed as	ind v	with multiple thunderstorms	
	(K)	Hurricanes	(B)	Tornadoes	
	(C)	Wind power	(D)	Fluctuating nature	
	(E)	Answer not known			
175.		o of the power actually delivered in the rotor disc is known as	d by	the rotor to the power of the	
	(41)	The power coefficient	(B)	The power number	
	(C)	The power efficiency	(D)	The power factor	
	(E)	Answer not known			
176.	The 1	UNIFAC method for predicting	acti	vity coefficients is based on	
	W	UNIQUAC Equation	(B)	Wilson Equation	
	(C)	Margules Equation	(D)	Van Laar Equation	
	(E)	Answer not known			
177.	Activ	vity coefficients are strong func	tions	s of of solution	
	(A)	Temperature	B	Concentration	
	(C)	Pressure	(D)	Mole fraction	
	(E)	Answer not known	2 5		
	2000 TO				

178. The partial pressure of the species in the vapour phase is directly proportional to its liquid - phase mole fraction is states

Henry's law

- (B) Raoult's law
- (C) Vandarwalls equation
- (D) Ideal gas law
- (E) Answer not known
- 179. The Helmholtz free energy (A) is given by

$$\triangle$$
 $A = U - TS$

(B) A = H - TS

(C)
$$A = G - PV$$

(D) A = H + TS

- (E) Answer not known
- 180. Which one is used to remove gases or vapors from an evacuated space and compress them for discharge at a higher pressure?
 - (A) Diffuser

(B) Nozzle

Ejectors

(D) Compressors

- (E) Answer not known
- 181. The residual Gibb's energy dGR is given by the expression

(A)
$$dG^R = RT d \ln f$$

(B)
$$dG^R = RT d \ln p$$

(C)
$$dG^R = RTd \ln (fp)$$

$$\int dG^R = RT \, d \ln (f/p)$$

(E) Answer not known

- 182. The ratio of actual velocity to sonic velocity of a gas is known as
 - (A) Reynold's number

(B) Mach number

(C) Sonic number

- (D) Prandtl number
- (E) Answer not known
- 183. The equation relating E, P, V and T which is true for all substances under all condition is given by $\left(\frac{\partial E}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_H P$. This is called
 - (A) Maxwell's equation
 - Thermodynamic equation of state
 - (C) Equation of state
 - (D) Redlich Kwong equation of state
 - (E) Answer not known
- 184. The mole fraction or the solubility of gas in the liquid is proportional to the partial pressure of the gas over the liquid as given by

$$x_i = \frac{\overline{P_i}}{K_i}$$
, K_i is the

- Henry's law constant
- (B) Ideal gas constant
- (C) Gibbs free constant
- (D) Gas constant
- (E) Answer not known

- 185. The Gibbs Duhem equation relates
 - Partial molar properties of a mixture
 - (B) The Gibbs free energy to temperature
 - (C) Pressure and volume changes in an ideal gas
 - (D) Heat capacity and Enthalpy
 - (E) Answer not known
- 186. Isochoric process is

(A)
$$Q = \Delta H = \int C_P dT$$

$$(\mathbf{B}) \ Q = \Delta U = \int C_V \ dT$$

(C)
$$Q = \Delta A = \int C_A dT$$

(D)
$$Q = \Delta G = \int C_G dT$$

- (E) Answer not known
- 187. The plot of ln K. Versus reciprocal of absolute temperature for chemical reactions will be
 - (A) Exponential

(B) Quadratic

(C) Linear

- (D) Non Linear
- (E) Answer not known
- 188. Which rule is applicable for real solutions? When the composition of a component approaches unity?
 - 🕢 Lewis Randall rule
- (B) Henry's law

(C) Gibbs rule

- (D) Phase rule
- (E) Answer not known

189. Mathematical representation of first law of thermodynamics

(A) dQ = dE - dW

(B) dE = dQ + dW

(C) dW = dQ + dE

- $\mathbf{W} d\mathbf{Q} = d\mathbf{E} + d\mathbf{W}$
- (E) Answer not known

190. In most chemical reactions. An excess reactant is the

- one which is in excess amount over the stoichiometric requirement of the reactant
- (B) one which decides the conversion of the reactions
- (C) one which decides the rate of the reactions
- (D) one which decides the efficiency of the reaction
- (E) Answer not known

191. Yield is defined as

moles of product formed×stoichiometry factor moles of reactant consumed

- $(B) \quad \frac{\text{moles of reactant consumed} \times \text{stoichiometry factor}}{\text{moles of product formed}}$
- (C) stoichiometric factor × moles of reactant and product formed
- (D) stoichiometric factor only
- (E) Answer not known

192. Selectivity is defined as

- (A) Sum of moles of desired and undesired product
- Ratio of desired and undesired product
- (C) Moles of desired product only
- (D) Moles of undesired product only
- (E) Answer not known

193.	The s	The sublimation is known as				
	W	Vapour is produced from solids				
	(B)	Vapour is produced from liquid	ds			
	(C)	Solid-liquid reaction				
	(D)	Solid-liquid thermal reaction				
	(E)	Answer not known				
194.	The r	number of atoms present in 416	6.6 g	barium c	hloride is	
	(A)	12.044	(B)	10.044×	10^{23}	
	(6)	12.044×10^{23}	(D)	8.314		
	(E)	Answer not known				
195.	The S	SI Unit of mass flow rate?				
,	SAT	kg/h	(B)	kg/s^2		
	(C)	m/s		g/s^2		
	(E)	Answer not known				
196.	A double effect evaporator concentrates a liquor containing 4% (by mass) caustic soda to produce a lye containing 25% solids (by mass). The amount of water evaporated per 100 kg of feed is					
	(A)	50 kg	(B)	$25~\mathrm{kg}$		
	(C)	16 kg	(D)	84 kg		
	(E)	Answer not known				

197. A Grosvenor Humidity is expressed as

(A)
$$Y = (\overline{P}_A/P_t - \overline{P}_A)$$

$$Y = (\overline{P}_A/P_t - \overline{P}_A) \times \left(\frac{M_A}{M_B}\right)$$

(C)
$$Y = (P_A^{\circ}/P_t - P_A^{\circ})$$

(D)
$$Y = \left(P_A^{\circ}/P_t - P_A^{\circ}\right) \times \left(\frac{M_A}{M_B}\right)$$

(E) Answer not known

Where,

 \overline{P}_A = Partial Pressures

 P_A° = Vapour Pressure

 P_t – Total Pressure

 $M_A \ \& M_B$ – Molecular weights

198. The barometer reads 100 KPa. The vapor pressure of water at dew point is 2.0624 KPa. The molar humidity of air is

- (A) $0.052 \frac{\text{K mol water pa Vapor}}{\text{kg mol of dry air}}$
- (B) $0.12 \frac{\text{K mol water Vapor}}{\text{kg mol of dry air}}$

$$0.02 \frac{\text{Kg mol water Vapor}}{\text{Kg mol of dry air}}$$

- (D) $0.01 \frac{\text{Kg mol of water vapor}}{\text{Kg mol of dry air}}$
- (E) Answer not known

199.		quantity of heat to be erature by one degree ce		to a substance to rise its
,	(A)	Specific heat	(B)	Heat Capacity
	(C)	Sensible heat	(D)	Latent heat
	(E)	Answer not known		
200.		quantity of material th ation is known as	at does no	ot change during particular
	(A)	Trace material	(B)	Reactive material
	(6)	Tie material	(D)	Solute material
	(E)	Answer not known		