COMBINED TECHNICAL SERVICES EXAMINATION (NON-INTERVIEW POSTS) COMPUTER BASED TEST PAPER – II – CHEMICAL ENGINEERING (DEGREE STANDARD) (CODE: 405)

1.	Ma	tch th	ie alloy	s with	its co	emposition.						
	(a)	Dur	rion		1.	Tin-Lead						
	(b)	Terr	eplate		2.	Silicon – Iron						
	(c) Ferrite					Zinc-copper						
	(d)	Bras	ss		4.	Chromium – ferrous						
		(a)	(b)									
	(4)	2	${1 \atop 2}$	4	3							
	(B)	1	2	4	3							
	(C)	1	2	3	4							
	(D)	4	2	3	1							
	(E)											
2	$\operatorname{Th}_{\epsilon}$	e situ	ation o	of loose	e joint	t under varying load may be susceptible						
	(A)	Ma	rine co	rrosio	n	(B) Stress corrosion cracking						
	(C)	Ga	lvanic	corrosi	on	(D) Fretting corrosion						
	(E)	An	swer n	ot kno	wn							
3.	Hai	rdena	ble sta	inless	steels	s usually contains ———— carbon						
	(A)	0.6	%			(B) 0.9%						
	(C)					(D) 1.5%						
	(E)		swer n	ot kno	wn							
4.	Bra	ıss is	an allo	y of co	pper a	and						
	(A)	Tin	1			(P) Zinc						
	(C)					(D) Nickel						
	(E)		swer n	ot kno	wn	(4) 1:0000						

_	C1:1:	1 1 1			1	^
5.	Silica	bricks	are	never	used	tor

- (A) Open-hearth furnaces
- (B) Coke ovens
- (C) Gas retorts
- Furnaces subjected to extreme conditions
- (E) Answer not known
- 6. The material used in the storage of ammonia is
 - (A) Mild steel

- (B) Stainless steel 316
- (C) Stainless steel 304
- (D) Carbon steel
- (E) Answer not known
- 7. Paddle agitator
 - Produces radial flow
 - (B) Produces axial flow
 - (C) Moves at a speed less than critical speed
 - (D) Move at a speed greater than critical speed
 - (E) Answer not known

- 8. Choose the suitable mixers for respective solids used
 - (a) Kneading machines
- 1. Uniform coating of solid particles with a small liquid
- (b) Pony mixers
- 2. Mix deformable or plastic solids
- (c) Muller mixers
- 3. Mix Rubber and plastic solids, Masticate crude rubber
- (d) Banbury mixers
- 4. Blend viscous liquid or light pastes
- (a) (b) (c) (d) (A) 3 1 2 (B) 2 4 (C) 2 3 4 1 4 1 3
- (E) Answer not known
- 9. To keep the power input constant for a stirred vessel operating under fully developed turbulent flow conditions (constant power number), if the impeller diameter is increased by 20%, the impeller speed should be decreased by a factor of
 - (A) $(1.2)^{\frac{3}{2}}$

(B) $(1.2)^{\frac{3}{5}}$

(C) $(1.2)^{\frac{2}{3}}$

- $(1.2)^{\frac{5}{3}}$
- (E) Answer not known
- - (A) 3.4

(3) 4.3

(C) 4.7

- (D) 7.4
- (E) Answer not known

- Filter medium resistance is important during the of 11. filtration
 - Early stages

(B) Final stages

(C) Entire process

- (D) Decreased time
- (E) Answer not known
- Specific cake resistance of compressible sludge 12.
 - Increases with pressure drop
 - (B) Decreases with pressure drop
 - Unchanged with pressure drop (C)
 - Decreases and increases with pressure drop (D)
 - (E) Answer not known
- 13. A filter aid is added to the slurry before filtration to
 - (A) Decrease the porosity of the cake
 - Decrease the compressibility of the cake (B)
 - (C) Increase the compressibility of the cake
 - Increase the porosity of the cake
 - Answer not known **(E)**
- 14. Sphericity for a non–spherical particle is given by
 - (A) $6 Dp \frac{Sp}{Vp}$

 $\frac{6}{Dp} \frac{Vp}{Sp}$ (D) $\frac{Dp}{6} \frac{Vp}{Sp}$

(C) $\frac{6}{Dp}\frac{Sp}{Vp}$

- Answer not known **(E)**

- What is the standard screen used to measure the particle size? 15.
 - 35 45 mm

(B) 68 - 88 mm

 $38 \mu m - 76 \text{ mm}$

- (D) 88 110 mm
- Answer not known
- The specific surface area of a particle for the whole bed is given by 16. - (if the particles are non-spherical)

Whereas, $\phi = Sphericity$

 ε = Bed porosity

 D_{sp} = Dia of the particle

(A) $\frac{6}{\phi D_{sp}}$

 $6(1-\varepsilon)/\phi$ (C)

- (B) $\frac{6\phi}{D_{sp}}$ (D) $6(1-\varepsilon)/\phi D_{sp}$
- **(E)** Answer not known
- The collection efficiency of cyclone separators increases with 17.
 - **(1)** Decreasing particle size
 - (2)Increasing particle density
 - (3)Decreasing gas velocity
 - **(4)** Increasing gas temperature

Which of the following statements are correct?

Only (1) (A)

(B) (1) and (2) only

(2) only

- (D) (3) and (4) only
- Answer not known (\mathbf{E})

- 18. A ballmill is used for grinding a powder from $50 \, \mu m$ to $10 \, \mu m$. If the diameter of ball mill is 100mm, The diameter of the ball is 10 mm, and operating speed is 50% of the critical speed, calculate the operating speed in RPM.
 - (A) 69.46 RPM

(B) 60.46 RPM

- 4
 - 70.46 RPM

- (D) 79.46 RPM
- (E) Answer not known
- 19. The value of drag co-efficient (C_D) remains almost constant at a value of 0.1, for the Reynold's Number (Nee) in the range of
 - $N_{\rm Re} > 2 \times 10^5$

- (B) $500 > N_{\text{Re}} < 2 \times 10^5$
- (C) $0.2 < N_{\text{Re}} < 500$

- (D) $10^{-4} < N_{\text{Re}} \ 0.2$
- (E) Answer not known
- 20. Match the following terms with correct unit
 - (a) Rm-Medium Resistance
- 1. Dimensionless
- (b) α -specific cake resistance
- 2. m^{-1}

(c) Screen opening

3. $\frac{m}{kg}$

(d) Shape factor

- 4. mm
- (a) (b) (c) (d)
- (A) 3 2 1 4
- (B) 2 3 4 1
- (C) 1 4 2 3
- (D) 4 1 3 2
- (E) Answer not known

- 21. The type of heat exchanger has the same space is occupied by the hot and cold gases, between which heat is exchanged known as
 - (A) Shell and tube heat exchanger
 - (B) Regenerator
 - (C) Direct contact heat exchanger
 - (D) Indirect contact heat exchanger
 - (E) Answer not known
- 22. For a given inlet and outlet temperatures of the hot and cold fluids, the Logarithmic mean temperature difference (LMTD) is
 - (A) Greater for parallel flow heat exchanger than counter current flow exchangers
 - Greater for counter current flow heat exchangers than parallel flow
 - (C) Same for both parallel and counter current heat exchangers
 - (D) Depends on the properties of fluid
 - (E) Answer not known
- 23. Economy of evaporator is
 - (A) Number of kilograms of water vaporised per hour
 - (B) Number of kilograms of steam fed per hour
 - (C) Kilogram of steam fed per No.of kilograms vaporised
 - Number of kilograms vaporised per kilogram of steam fed
 - (E) Answer not known

- 24. Economy of multiple effect evaporator is not influenced by
 - Boiling point elevation
 - (B) Temperature of feed
 - (C) Ratio of weight of thin liquor to thick liquor
 - (D) Ratio of heat transfer
 - (E) Answer not known
- 25. The Net Transfer Unit is (NTU)
 - (A) U.C_{min}/A
 - (D) UA / Cmin
 - (C) A.C_{min}
 - (D) U/A.C_{min}
 - (E) Answer not known
- 26. Choose the correct statement or statements
 - (i) The shape factor of small enclosed body with respect to the enclosing surface is zero
 - (ii) The shape factor of small enclosed body with respect to the enclosing surface is unity
 - (iii) A small opening form a large enclosure at constant temperature will provide black body radiation
 - (iv) Black paint is an example of Block body
 - (A) (i) only
 - (B) (i) and (iii) only
 - (C) (i) and (ii) only
 - (ii) and (iii) only
 - (E) Answer not known

27.	Reynolds analogy expresses the relationship between heat transfer for laminar flow on a flat plate and												
	(A)	Velocity											
	(D)	Fluid friction											
	(C)	Viscosity											
	(D)	Density											
	(E)	Answer not known											
28.	The	prandtl number for gases is											
	(A)	100											
	(C)	50 (D) 200											
	(E)	Answer not known											
29.	The	Reciprocal of resistance is											
	(A)	Viscosity											
	(B)	Heat transfer coefficient											
	(C)	Thermal conductivity											
		Conductance											
	(E)	Answer not known											
30.		ch loss is relatively high in centrifugal pump having open ellers?											
	(A)	Mechanical losses Leakage losses											
	(C)	Recirculation losses (D) Hydraulic losses											
	(E)	Answer not known											

- 31. In centrifugal pumps
 - (A) Discharge is not Even, it is pulsating
 - (B) Are belt driven
 - Needs priming
 - (D) Develop high pressure
 - (E) Answer not known
- 32. Which of the following options represent the compression ratio range for blowers?
 - (A) Compression ratio above 7
 - (B) Compression ratio above 6 and below 8
 - Compression ratio below 3 or 4
 - (D) Compression ratio above 10
 - (E) Answer not known
- 33. The operating range of fluidization velocities for all particle sizes are
 - (A) Greater with larger particles
 - (B) Much greater with small particles
 - (C) Almost the same
 - (D) Greater with small particles
 - (E) Answer not known

- 34. The factors on which the rate of drying depends
 - (1) Gas velocity and Humidity of gas
 - (2)Dry bulb temperature
 - (3)Dew point
 - (4) Area of drying surface and temperature
 - (1) and (4)
 - (2) and (3)(B)
 - (C) (3) and (4)
 - (1) and (2)(D)
 - **(E)** Answer not known
- Choose the major loss of energy in pipes from the options given 35.
 - Frictional loss
 - (B) Shock loss
 - Entry loss (C)
 - Exit loss (D)
 - **(E)** Answer not known
- For laminar flow through a packed bed the pressure drop is 36. proportional to;

 $(V_s ext{ is superficial liquid velocity and } D_p ext{ is the particle diameter)}$

(B)
$$\frac{{V_s}^2}{{D_p}^2}$$
 (D) $\frac{{V_s}^2}{{D_p}^3}$

(C)
$$\frac{{V_s}^2}{D_p}$$

(D)
$$\frac{{V_s}^2}{{D_p}^3}$$

Answer not known **(E)**

37.	An e	xample of thixotropic fluid is		
• • • • • • • • • • • • • • • • • • • •	(A)	Starch in water	(B)	Corn flour solution
	(C)	Gypsum suspension	. DY	Some paints
	(E)	Answer not known		
38.	Shea	ar rate thinning fluids are kno	own as	
	(A)	Newtonian	(B)	Pseudo plastic
	(C)	Bingham plastic	(D)	Dilatant
	(E)	Answer not known		
39.	The	type of reservoir used in singl	le colu	mn manometer is
	(A)	Small		
	B	Large		
	(C)	Extremely small		

- 40. For laminar flow of incompressible fluid in closed conduit of radius 'R' maximum shear stress occurs at
 - (A) A distance equal to $\frac{R}{4}$ from the wall
 - (B) The centre

(D)

(E)

- (C) A distance equal to $\frac{R}{2}$ from the wall
- (D) The wall
- (E) Answer not known

Size is Irrelevant

Answer not known

- 41. Removal of the solids present in the catalyst is called as
 - (A) Regeneration

(B) Reactivation

(C) Poisoning

- (D) Displacement
- (E) Answer not known
- 42. Which of the following is true for fluidized catalytic beds?
 - (A) Batch reactor category
 - (B) No pressure drop
 - Bulk density is a function of the flow rate through the bed
 - (D) Cannot be used for multi-phase chemical reactions
 - (E) Answer not known
- 43. The reaction 2A+B→2C occurs on a catalytic surface the reactant A and B diffuse to the catalyst surface and get converted completely. To the product C, which diffuses back. The steady state molar fluxes of A,B and C are related by
 - $(A) N_A = 2N_B = N_C$

- (B) $N_A = -\left(\frac{1}{2}\right)N_B = -N_C$
- $N_A = 2N_A = -N_C$
- (D) $N_A = \left(\frac{1}{2}\right)N_B = N_C$
- (E) Answer not known
- 44. The Knudsen diffusivity is dependent on
 - (A) The molecular velocity only
 - (B) The pore radius of the catalyst only
 - (C) The molecular mean free path only
 - The molecular velocity and pore radius of the catalyst
 - (E) Answer not known

- 45. A phase tracer is introduced in an ideal CSTR (with a mean residence time τ) at time = 0. The time taken for the exit concentration of the tracer to reach half of its initial value will be
 - (\mathbf{A}) 2τ
 - (B) 0.5τ
 - (C) $\tau/0.693$
 - (D) 0.693τ
 - (E) Answer not known
- 46. The operation of a Rotameter is based on
 - (Variable area flow meter
 - (B) Variable head flow meter
 - (C) Pressure drop across a nozzle
 - (D) Pressure at a stagnation point
 - (E) Answer not known
- 47. The instrument which uses semiconductor devices for temperature measurement are
 - Thermistors
 - (B) Bimetallic thermometers
 - (C) Mercury thermometers
 - (D) Gas filled thermometers
 - (E) Answer not known

- 48. The non-adiabatic fixed bed reactors, radial mixing was supposed to be sufficiently good that all the resistance to energy transfer could be concentrated at the
 - (A) Reactor wall
 - (B) Baffles
 - (C) Agitator
 - (D) Feed concentration
 - (E) Answer not known
- 49. For the liquid phase zero-order reaction X→Y, the conversion of X in a CSTR is found to be 0.2 at a space velocity of 0.1 min⁻¹. What will be the conversion for a PFR with a space velocity of 0.2 min⁻¹? Assume that all the other operating conditions are the same for CSTR and PFR.
 - 0.10
 - (B) 0.15
 - (C) 0.20
 - (D) 0.25
 - (E) Answer not known
- 50. The elements of fluid can cross the vessel boundary more than one time is called as ———— boundary condition.
 - Open vessel
 - (B) Closed vessel
 - (C) Exit stream
 - (D) Entrance stream
 - (E) Answer not known

- 51. The single time fixed amount inlet for finding the E curve is called
 - (A) Pulse input

(B) Step input

(C) Trace input

- (D) Continuous input
- (E) Answer not known
- 52. For a second order liquid phase reaction 50% of 'A' converted in 10 min. The time taken for 75% conversion is
 - (A) 10 min

(B) 20 min

(C) 30 min

- (D) 40 min
- (E) Answer not known
- 53. The unsteady state material balance equation for the first order reaction carried out in a CSTR is ————.

where 'Q' is the volumetric flow rate, 'CAO' and 'CA' are inlet and outlet concentration, in the reactor, 'K'-rate constant and 'V' is the volume of the reactor

(A)
$$V \frac{dC_A}{dt} = QC_{Ao} + QC_A + KC_{AV}$$

$$(B) V \frac{dC_A}{dt} = QC_{Ao} - QC_A - KC_{AV}$$

(C)
$$V \frac{dC_A}{dt} = QC_{Ao} - QC_A$$

(D)
$$QC_{Ao} - QC_A = KC_{AV}$$

(E) Answer not known

- 54. From the Arrhenius law, the value of the frequency factor (K_0) does not affect
 - (A) Concentration
 - (B) Pressure
 - (C) Temperature
 - (D) Flow rate
 - (E) Answer not known
- 55. The time required to process one reactor volume of feed measured at specified condition is known as
 - (A) Space velocity
 - (P) Space time
 - (C) Volumetric feed rate
 - (D) Mass flow rate
 - (E) Answer not known
- 56. The units of frequency factor in Arrhenius equation is
 - Same as those of the rate constant
 - (B) Depend on the order of the reaction
 - (C) Depend on temper, pressure of the reaction
 - (D) Are cycles per unit times
 - (E) Answer not known

- 57. Which among the following is used to study the kinetics of surface catalyzed reactions for enzyme?
 - Michaelis Menton
 - (B) Levenspiel Model
 - (C) Ottengraf Model
 - (D) Logistic Model
 - (E) Answer not known
- 58. Which of the following statement is/are correct?
 - Statement 1: Reactions with high activation energies are very high temperature sensitive.
 - Statement 2: Reactions with low activation energies are relatively temperature insensitive
 - (A) Statement 1 only correct
 - By Statement 1 and 2 correct
 - (C) Statement 2 only correct
 - (D) Both Statement are incorrect
 - (E) Answer not known
- 59. The unit for rate of reaction is usually
 - Moles per liter per second
 - (B) Moles per second per liter
 - (C) Moles per second
 - (D) Moles per liter
 - (E) Answer not known

- 60. The rate constant of a zero order reaction is 0.2 mol/lit. hr. What will be the initial concentration of the reactant if, after half an hour, its concentration is 0.05 mol/lit?
 - (A) 0.115 moles / litre
 - (B) 0.15 sec^{-1}
 - 0.15 moles/litre
 - (D) 0.0115 moles
 - (E) Answer not known
- 61. The Integrating factor of the equation

$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
 is

- (A) $-\frac{1}{e}$
- (B) $\frac{1}{e}$
- $\int \int \frac{1}{x+1}$
- (D) $\log(x+1)$
- (E) Answer not known

- 62. The Hermitian matrix of A is: where, $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & -5 \end{bmatrix}$ A' =
 - (A) $\begin{bmatrix} 0 & 3+4i \\ 3-4i & 0 \end{bmatrix}$
 - (B) $\begin{bmatrix} 1 & 3+4i \\ 3-4i & 1 \end{bmatrix}$
 - $\begin{bmatrix} 2 & 3-4i \\ 3+4i & -5 \end{bmatrix}$
 - (D) None of the above
 - (E) Answer not known
- 63. Form the differential equation of simple Harmonic Motion given by $x = A \cos(nt + \alpha)$ where x and t are variables and A and α are constants.
 - (A) $\frac{dx}{dt} = Ax$
 - (B) $\frac{d^2x}{dt^2} = nx$
 - $\frac{d^2x}{dt^2} + n^2x = 0$
 - $(D) \quad \frac{d^2x}{dt^2} + nx = 0$
 - (E) Answer not known

64. Find the order and degree of the differential equation

$$\frac{d^2y}{dx^2} = f(x) \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}$$

- (A) Order 2 degree 3
- (B) Order 1 degree 2
- (C) Order 3 degree 2
- Order 2 degree 2
- (E) Answer not known

65.
$$\frac{d^2x}{dx^2} + a^2x = 0$$
 (1)

$$X=0$$
 at $x=0$

$$X=0$$
 at $x=2R$

The solution of (1) which satisfies the conditions X=0 at x=0 is in the form; X=C sin ax and the condition x=0 at x=2R requires $c\sin aR=0$; $a_n=\frac{n\pi}{2R}$ where $n\neq 0$; the values of a,a_n are called;

- (A) Eigen functions
- (P) Eigen values
- (C) Fourier values
- (D) Finite values
- (E) Answer not known

- 66. The product of Eigen values of a matrix is the equal to its
 - (A) Rank
 - Determinant
 - (C) Trace
 - (D) Transpose
 - (E) Answer not known
- Eliminate a and b from $Z = axe^y + \frac{1}{2}a^2e^{2y} + b$
 - and find the partial differential equation
 - (A) $\frac{\partial z}{\partial x} = xe^y + \frac{1}{2}e^{2y}$
 - $\int \int \frac{\partial z}{\partial y} = x \left(\frac{\partial z}{\partial x} \right) + \left(\frac{\partial z}{\partial x} \right)^2$
 - (C) $\frac{\partial z}{\partial x} = x \left(\frac{\partial z}{\partial y} \right) + \left(\frac{\partial z}{\partial y} \right)^2$
 - (D) $\frac{\partial z}{\partial y} = xe^y + \frac{1}{2}e^y$
 - (E) Answer not known

68. The Lagrange's auxiliary equations for the partial differential equation $P_p + Q_q = R$ is [Choose the best answer].

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

(B)
$$\frac{dx}{P} = \frac{dy}{Q}$$

(C)
$$\frac{dx}{P} = \frac{dz}{R}$$

(D)
$$\frac{dP}{x} = \frac{dQ}{y} = \frac{dR}{z}$$

- (E) Answer not known
- 69. Find the value of K for which the system of equations.

$$(3k-8)x+3y+3z=0$$

$$3x + (3k - 8)y + 3z = 0$$

$$3x + 3y + (3k - 8)z = 0$$

Has a Non-Trivial solution

$$2/3$$
, $11/3$, $11/3$

(B)
$$\frac{2}{3}, \frac{2}{3}, \frac{11}{3}$$

(C)
$$\frac{11}{3}, \frac{11}{3}, \frac{11}{3}$$

(D)
$$\frac{2}{3}, \frac{2}{3}, \frac{2}{3}$$

(E) Answer not known

- 70. Match the following methods with their respective order of convergence.
 - (a) Newton Bisection
- 1. 1

(b) Secant

- 2. 1.62
- (c) Newton Raphson
- 3. 2
- (a) (b) (c) 1 2 3
- (B) 2 3 1
- (C) 3 2 1
- (D) 3 1 2
- (E) Answer not known
- 71. The roots of the equation $x^3 4x 10 = 0$ lies between
 - (A) 0 and 1
 - P = 2 and 3
 - (C) 3 and 4
 - (D) 1 and 2
 - (E) Answer not known

72. The truncation error of the Trapezoidal Rule [for Single Application] is

$$E_t = -\frac{1}{12} f''(\xi) (b - a)^3$$

(B)
$$E_t = -\frac{1}{12} f''(\xi) (a-b)^3$$

(C)
$$E_t = \frac{1}{12} f''(\xi) (a-b)^3$$

(D)
$$E_t = \frac{1}{12} f''(\xi)(b-a)^3$$

- (E) Answer not known
- 73. Using the Trapezoidal Rule and 4 equal intervals (n=4), the calculated value of the integral (Rounded to the first decimal place)

$$\int_{0}^{\pi} \sin\theta \, d\theta \text{ is }$$

- (A) 1.7
- (B) 1.9
 - (C) 2.0
 - (D) 2.1
 - (E) Answer not known
- 74. Process in which the basic process variables vary with both time and space, is called as
 - (A) Lumped parameter models
 - (B) Distributed parameter models
 - (C) Steady state models
 - (D) Neural Network model
 - (E) Answer not known

- 75. The positive root of $x^3+1=4x$ by regular falsi method is
 - (A) 1.1211
 - 0.7391
 - (C) 2.1821
 - (D) 3.123
 - (E) Answer not known
- 76. The process of finding an equation of best fit is known as
 - (A) Transformation of equation
 - (B) Eigen value
 - Curve fitting
 - (D) Orthogonalization
 - (E) Answer not known
- 77. Linear equation in one variable is written as

$$Ax + B = 0$$

- $(B) \quad A + Bx^2 = 0$
- (C) AB=0
- (D) $Ax + Bx^2 = 0$, where A and B are coefficients
- (E) Answer not known

78. The system

$$x-3y=4$$

$$-2x+6y=5$$

has following type of solution

- (A) The system has exactly one solution
- No solution
- (C) Infinite number solutions
- (D) Cannot say
- (E) Answer not known
- 79. Identify the linear equation from the following
 - (A) 5x + 3y 8xy = 16
 - $(B) x + \pi y + ez = \log 5$
 - (C) $3x^2 + 2x + 1 = 0$
 - (D) $\log y = 5x + 2$
 - (E) Answer not known
- 80. Find the Y-Intercept of the line 3x-4y+10=0
 - (A) -4
 - (B) 3
 - (C) 10
 - **(D)** 2.5
 - (E) Answer not known

81. The pH rai	nge of Acid Ra	ain
----------------	----------------	-----

- (A) 5 to 6 pH
- (P) 4 to 4.9 pH
- (C) 5.5 to 6.5 pH
- (D) 4.5 to 5.5 pH
- (E) Answer not known

82. MIC Methyl Isocyanate Burst with

- (A) Methyl
- (P) Water
- (C) Alcohol
- (D) Cyanate
- (E) Answer not known
- 83. ——— states that the value beliefs and attitudes differ from one society to another.
 - (A) Ethical relativism
 - Descriptive Relativism
 - (C) Rational Relativism
 - (D) Contextualism
 - (E) Answer not known

84.	Match	the	foll	owing	y

(a) Copyright

- 1. Formula
- (b) Trade-Secret
- 2. Integrated Circuits
- (c) Layout designs
- 3. Loger
- (d) Trade mark
- 4. Books
- (d) (a) (b) (c) 3 4 1 (B) 3 2 1 4 (C) 1 3 2 4 (D) 2 3 1 4
- (E) Answer not known

85. Name the correct relativism given below

- (A) Honest
- (P) Descriptive
- (C) Morality
- (D) Difficult
- (E) Answer not known

86. The positive right means

- (A) Basic Right
- (B) Specific Right
- (C) Right of Refusal
- (D) Right to Recognition
- (E) Answer not known

87.	Pro the		nal rig	ghts of	f employees	are r	not justifi	led by	the	follov	ving		
	(A)	Dut	y theo	ry									
	(B)		hts the	_									
	(C)	Utilitarian theory											
		Gilligan theory											
	(E)	Ans	swer no	ot kno	wn								
88.	Mat	thema	ıtical v	ersion	of scenario a	analy	rsis is						
	(A)	Fau	ılt tree	analy	rsis								
	VB)	Event tree analysis											
	(C)												
	(D)	·											
	(E)	Ans	swer no	ot kno	wn								
89.	Match the following												
	(a)			_	ar off lagoon	1.	High consequ	proba ence ri		ty	low		
	(b)	Swin	nming	in a b	each	2.							
	. •		ted wi										
	(c)	Infor	med co	onsent	,	3.	Occupat	ional	risk				
	(d)						High process		_	igh			
		(a)	(b)	(c)	(d)								
	(A)	2	3	4	1								
	(B)	2	3	1	4								
	(C)	3		4	1								
	(D)	3	2	1	4								
	(E)	Ans	wer no	ot kno	wn								

90.	Mat	ch th	e follo	wing w	ith refe	erence	to moral development				
	(a)	Kohlberg					1. Duty and Gift				
	(b)	(b) Gilligan					Adapt accepted rights				
	(c)	· ·				3.					
	(d)	Conventional					In a different voice				
		(a)	(b)	(c)	(d)						
	(A)	3	2	1	4						
	(B)	1	3	2	4						
	40)	4	3	1	2						
	(D)	3	4	2	1			:			
	(E)	Ans	swer n	ot knov	wn						
91.	Which one of the following state is true? With reference to models of professional roles?										
	(i)	Social servants follows the concept of professionalism a independence									
	(ii)	Bureaucratic servants follows the concept of professionalism as employees									
	(iii)	Gu	ardian	s follov	v the co	ncept	of professionalism as emp	loyees			
	(A)	(i) only									
	B	(i) and (ii) only									
	(C)	(ii)	only								
	(D)	(ii)	and (ii	i) only							
		Answer not known									

- 92. Engineers being a responsible social experimenter specifies
 - Safety Point of View
 - (B) Technical competence point of view
 - (C) Company point of view
 - (D) Development point of view
 - (E) Answer not known
- 93. Gilligan theory based on moral development is mainly based on
 - (A) desire to please others
 - (B) logic and rule based
 - Caring nature
 - (D) Factual and Justice
 - (E) Answer not known
- 94. Types of ethical dilama compared to profit versus welfare
 - Technology ethics
 - (B) Administrative ethics
 - (C) Business ethics
 - (D) Environmental ethics
 - (E) Answer not known

- 95. In Kohlberg's theory conventional level is defined in which
 - (A) Norms of one's family group or society are accepted as final standard of morality
 - (B) Norms of Individual are accepted as final standard of morality
 - (C) Norms of group of people accepted as final standard of morality
 - (D) None of above
 - (E) Answer not known
- 96. Ethical values are associated with
 - Social system
 - (B) Rule making
 - (C) Compassionate living
 - (D) Devotional living
 - (E) Answer not known
- 97. Which is not one of the three types of inquiry?
 - (A) Normative
 - (B) Conceptual
 - (C) Factual
 - (2) Informal
 - (E) Answer not known

- 98. Match the following:
 - (a) Personal ethics
 - (b) Professional ethics
 - (c) Micro ethics
 - (d) Macro ethics
 - (b) (a) (c) (d) (A) 3 2 4 1 3 2 1 2 (C) 4 1 (D) 3 2 4 1
 - (E) Answer not known

- 1. Grafting or Corruption
- 2. Factory of Safety
- 3. Organisational level
- 4. Day to day life

- 99. Integrity comes under
 - (A) Public Spirited virtue
 - (B) Self-direction virtue
 - (C) Team work virtue
 - (D) Proficiency virtue
 - (E) Answer not known
- 100. The Enquiry that seek to identify and justify the morally desirable norms and standards that guide individuals or groups in taking decisions.
 - (A) Conceptual enquiry
 - (P) Normative enquiry
 - (C) Factorial enquiry
 - (D) Descriptive enquiry
 - (E) Answer not known

101. Modern theoretical developments in molecular thermodynamics of liquid solution behaviour is based on the concept of

Local composition

- (B) Local pressure
- (C) Local temperature
- (D) Local pressure, temperature and composition
- (E) Answer not known
- 102. The effect of temperature on equilibrium constant is given by

$$(A) \frac{d \ln k}{dT} = \frac{\Delta H^{\circ}}{RT^2}$$

(B)
$$\frac{d \ln k}{dT} = \frac{\Delta H^{\circ}}{RT}$$

(C)
$$\frac{d\ln k}{dT} = \frac{-\Delta H}{RT^2}$$

(D)
$$\frac{d \ln k}{dT} = \frac{-\Delta H^{\circ}}{RT}$$

- (E) Answer not known
- 103. As pressure approaches zero, the ratio of fugacity to pressure (f/p) for a gas approaches
 - (A) Zero

Unity

(C) Infinity

- (D) An indeterminate value
- (E) Answer not known
- 104. The entropy of a perfect crystal of every element or compound is zero at
 - (A) 0°C

(B) 273°C

(C) 100°C

- (D) -273°C
- (E) Answer not known

105.	Whe	n mach number, $M>1$ the flaw	is							
	(A)	Incompressible								
	(B)	Sonic								
	(C)	Sub sonic								
	(D)	Supersonic								
	(E)	Answer not known								
106.		•	ty coefficient is divided into two n and interaction contributions							
	14)	UNIFAC model	(B) NRTL model							
	(C)	Vanlaar model	(D) Wilson model							
	(E)	Answer not known								
107.	Which of the following are intensive property?									
	(A)	Entropy								
	(B)	Heat capacity								
	(0)	Surface tension and chemical	potential							
	(D)	Free energy								
	(E)	Answer not known								
108.	The	value of Joule Thomson coeffici	ent at inversion point is							
	(1)	0	(B) 1							
	(C)	Infinity	(D) Negative							
	(E)	Answer not known	-							

- 109. Energy can neither be created nor can be destroyed. This is called
 - Zeroth law of thermodynamics
 - First law of thermodynamics
 - (C) Second law of thermodynamics
 - (D) Third law of thermodynamics
 - **(E)** Answer not known
- 110. In certain systems the degree of freedom is negative, which indicates that system is,

Over defined

(B) Defined

(C) Not defined

- (D) Confined
- Answer not known **(E)**
- 111. Vapor phase hydration of C₂H₄ to ethanol by the following reaction : $C_2 H_{2(g)} + H_2 O_{(g)} \leftrightarrow C_2 H_5 OH_{(g)}$

Attains equilibrium at 400 k and 3 bar. The standard Gibb's free energy change of reaction at these condition is $\Delta g^{\circ} = 4000 \,\text{J/mol}$. For 2 moles of an equimolar feed of ethylene and steam, the equation in term of the extent of reaction ε (in mole) at equilibrium is

$$\frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^2} - 0.3 = 0$$

(B)
$$\frac{(1-\varepsilon)^2}{\varepsilon(2-\varepsilon)}$$
 - 0.9=0

(C)
$$\frac{\varepsilon}{(1-\varepsilon)^2}$$
 - 0.3=0

(D)
$$\frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^2}$$
 - 0.9 = 0

Answer not known **(E)**

110.		rams atom carbon?	m disdipinde win contain 5.5						
	(A)	126 kilograms	(B) 128 kilograms						
	(B)	266 kilograms	(D) 268 kilograms						
	(E)	Answer not known							
117.		at engine operates between a at 300 K. What is the maximu	heat source at 700 k and a heat m efficiency of the engine?						
	(A)	0.43	(B) 0.51						
	(C)	0.57	(D) 0.47						
	(E)	Answer not known							
118.	What is the unit of specific gravity?								
	(A)	Kg/m³	(B) m ³ /Kg						
	(C)	m/s^2	(D) No unit						
	(E)	Answer not known							
119.	Absolute pressure is								
	A	Atmospheric Pressure + Gaug	ge Pressure						
	(B)	Atmospheric Pressure - Vacu	um Pressure						
	(C)	Atmospheric Pressure – Gaug	ge Pressure						
	(D)	Vacuum Pressure + Gauge Pressure							
	(E)	Answer not known							

120. The volume of a mixture of two organic liquids 1 and 2 is given by

 $V=110-17x_1-2.5x_1^2$. where V is the volume. x_1 and x_2 are the mole fractions. The expression for partial molar volume of liquid 2 is $(\overline{V_2})$

(A)
$$110-17x_1-2.5x_1^2$$

(B)
$$-17x_1 - 2.5x_1$$

$$(2)$$
 110+2.5 x_1^2

(D)
$$-34+5x_1$$

(E) Answer not known

121. The enthalpy of formation $\Delta H_f, H_2O$ for the reaction in a fuel cell is

$$\Delta H = -242 \,\mathrm{kJ/mol}$$

(B)
$$\Delta H = +242 \text{ kJ/mol}$$

(C)
$$\Delta H = +4200 \text{ kJ/mol}$$

(D)
$$\Delta H = -4200 \,\text{kJ/mol}$$

(E) Answer not known

122. Match the process in Group I with the catalyst in Group II:

Group I

Group II

- (a) Fischer. Tropsch synthesis
- 1. Nickel
- (b) Formaldehyde from methanol
- 2. Fe_2O_3
- (c) Hydrogenation of vegetable oil
- 3. Silver
- (d) Dehydrogenation of ethyl benzene
- 4. Cobalt

- (a) (b) (c) (d)
- (A) 3 4 1 2
- (B) 4 2 1 3 (C) 4 3 1 2
- (D) 3 4 2 1
- (E) Answer not known

123.	Ident	tify the organic substances qua	lifie	d as heat of fusion materials						
	(A)	Fatty acids	(B)	Bagasse						
	(C)	Rock Substances	(D)	Anematics						
	(E)	Answer not known								
124.	The	wind speed is measured using								
	(A)	Pyranometer	(B)	Manometer						
	(C)	Anemometer	(D)	Wind vane						
	(E)	Answer not known								
125.	The j	presence of sodium sulphate in	pulp)						
		Makes the Pulp bleachability	easie	er						
	(B)	Poor strength properties of page	per							
	(C)	Make the pulp bleaching poor								
	(D)	To recover the organic content	;							
	(E)	Answer not known								
126.	Sodi	um silicate is added in deterger	its t	0						
		Increase foam	(B)	Enhance dirt suspension						
	100	Avoid corrosion	(D)	Increase brightness						
	(E)	Answer not known								
			_							
127.	Ranc	idity of the fatty oil can be red	uced	by its						
	(A)	Hydrogenation	(B)	Purification						
	(C)	Oxidation	(D)	Decoloration						
	(E)	Answer not known								

128.	Match	the	foll	owing	
------	-------	-----	------	-------	--

Gas

Composition

(a) Synthesis gas

1. CH_4 , ethane

(b) Coke oven gas

2. Propane, butane

(c) Natural gas

- 3. CH_4 , H_2
- (d) Liquified Petroleum Gas (LPG)
- 4. CO, H₂
- (a) (b) (c) (d)
- (A) 3 1 4 2
- **P** 4 3 1 2
- (C) 1 2 3 4
- (D) 4 1 3 2
- (E) Answer not known
- 129. The spent looking liquor, is commonly called as
 - (A) White liquor

(B) Green liquor

Black liquor

- (D) Digestion liquor
- (E) Answer not known
- 130. Identify the polymer which is formed due to condensation polymerization.
 - (A) High-density polyethylene
 - (B) Low-density polyethylene
 - (C) Polypropylene
 - Polyester resin
 - (E) Answer not known

131.	Match	the	following	drugs	with	their	field	of ap	plicati	ions :
------	-------	-----	-----------	-------	------	-------	-------	-------	---------	--------

- (a) Ether USP
- (b) Diazepam USP
- (c) Acetophenetidine USP
- (d) Cimetidine
- (a) (b) (d) (c) 3 2 1 4 (C) 1 4 3 (D) 1 2
- Answer not known

- Antianxiety 1.
- 2. Anesthesia and solvent
- 3. Antiulcer
- 4. Analgestic and Antipyretic

132. Styrene butadiene rubber (SBR) is

- (A) Natural rubber
- A synthetic rubber
- Answer not known (E)
- (B) An engineering plastics
- (D) A synthetic manomer

133. Choose the correct option:

- (a) $[Ca_3(PO_4)_2]_3.CaF_2$
- (b) $CaH_4(PO_4)_2$
- (c) $Na_5P_3O_{10}$
- (d) Na_2SO_4

- Phosphate Rock 1.
- STTP 2.
- 3. Salt Cake
- Triple superphosphate 4.
- (a) (b) (c) (d)
- (A) 4 1
- 4 3
- (C) 2 3 1 4
- 3 1 4 2 (D)
- (\mathbf{E}) Answer not known

1	34.	Choose	the	hest.	answer	•
_		CHUUDO		$\sim \sim \sim \sim$	CLIC II OL	

- (a) Slaked lime
- 1. Calcium oxide
- (b) Quick lime
- 2. Sodium carbonate decahydrate
- (c) Gypsum
- 3. Calcium hydroxide
- (d) Washing soda
- 4. Calcium sulfate dihydrate

- (a)
- (b)
- (c)
- (A) 4
- 3
- 2

(d)

1

3

4

2

- ·(B) 1
- 4 3
- 2 1
- (C) 2
- $\Phi = 3$
- 1
- 4
- (E) Answer not known

135. The enzymes used to convert molasses to ethyl alcohol are

- (A) Lactase and invertase
- (P) Invertase and zymase
- (C) Amylase and zymase
- (D) Protease and invertase
- (E) Answer not known

136.	Picl	k the	correct	cataly	st from (Group	II f	or the	proce	ess in (Group I :
	Group I							Gre	Group II		
	(a)	(a) Hydrodesulfurization 1.						1.	Zec	lites	
	(b)	Fluid	d catal	ytic cra	cking			2.	Pt/	Al_2O_3	
	(c)	Napl	Naphtha Reforming					3.	Co-	mo/Al	$_2\mathrm{O}_3$
		(a)	(b)	(c)							
	(A)		1								
	(B)	•	2								
	(2)	3	1								
*	(D)	1	3	2							·
	(E)	Ans	wer no	t know	'n						
137.	The	mair	n raw n	nateria	l for the	produ	ıctio	n of ce	ement	;	
	A	Limestone				(B)	Coal				
	(C) Gypsum						(D) Sulphuric acid				
	(E)	Ans	swer no	ot know	vn						
138.	The	thre	e majo	r compo	onents a	re nec	essa	ry in	fertili	zers	
	(1)	Nit	rogen								
	(2)	Pho	sphor	ıs							
	(3)	Ace	tylene								
	(4)	Pot	assium	n							
	(A)	(1),	(2) and	d (3)							
	(B)	(1),	(3) and	d (4)							
	(C)	(1),	(2) and	d (4)							
	(D)	(2),	(3) and	d (4)							
	(E)			ot knov	vn						
	• •										

139.	The preferred reaction system for oxidation of O-xylene to phthalic anhydride										
	(A)										
	(B)	(B) Jacketed steam heated multi tubular reactor									
	(C)	Multi tubular reactor w	ith cooling								
	(B)	Multi-stage multi-tubul	ar reactor v	with inter stage co	oling						
	(E)	Answer not known									
140. Nitrogenous fertilizer is graded based in its											
	(A)	$N_2 O_4$ content	(B)	N ₂ content							
	(C)	HNO_3 content	(D)	NO ₂ content							
	(E)	Answer not known									
141.	The	density of supercritical w	vater								
	(A)	Decreases with increase	e in temper	ature							
	(B)	Increases with decrease	e in pressur	e							
	(C)	Decreases with increase	e in pressui	re							
	(D)	Increases with increase	in tempera	ature	•						
	(E)	Answer not known									
142.		an Ion exchange prod nerated by using	cess, catio	n exchange resi	n bed	is					
	(A)	Acid solution	(B)	Base solution							
	(C)	Buffer solution	(D)	Salt solution							
	(E)	Answer not known			· ·						

143.		exchangers with fixed negative ch	arges can bind mobile cations
	(A)	Anion exchanger (E	Cation exchanger
	(C)) Basic exchanger
	(E)	Answer not known	
144.	Iden	ntify the correct pair of property-ur	nit from the following
	(A)	Specific conductivity – ohm cm ⁻¹	
	(B)	Equivalent conductivity – ohm-1	$ m cm^2.~eq^{-1}$
	(C)	Molar conductivity – ohm-1 cm. n	$ m nole^2$
	(D)	$Cell\ constant - ohm^{-1}\ cm^{-1}$	
	(E)	Answer not known	
145.	The	ultra filtration retains particles of	•
	(A)	Micron – submicron size	
	(B)	Macro size	
	(C)	Micron size	
	(B)	Sub micron size	
	(E)	Answer not known	
146.		——— is an example of hydrophi	lic membrane.
	(A)	Polyethylene	
	` '	Poly propylene	
	• •	Polytetra fluoroethylene	
	VDI	Nylon	
	(E)	Answer not known	
	` /		

147.	_	as-liquid chromatography, the mass of solvent phase per unit me (W) equals the
	(4)	Bed density × fraction solvent loading
	(B)	Bed density / Fraction solvent loading
	(C)	Bed density - Fraction solvent loading
	(D)	Bed Density + Fraction solvent loading
	(E)	Answer not known
148.	The	driving force in dialysis process is
	(A)	Pressure difference
,	B	Concentration difference
	(C)	Temperature difference
	(D)	Fugacity difference
	(E)	Answer not known
149.	mixt	aration process in which one or more components of a liquid ture diffusing through a selective membrane evaporate under pressure is
	(A)	Membrane separation (B) Reverse osmosis
	(C)	Crystallization (D) Pervaporation
	(E)	Answer not known
150.		membrane skin thickness and average poresize can be varied anging the
	(M)	Casting conditions (or) post casting treatment
	(B)	Cross flow filtration
	(C)	Selective skin support
	(D)	Counter flow filtration
	(E)	Answer not known
405-C	hemi	cal Engineering 50

Distillation column is fed with $F\frac{mol}{h}$ of concentration x_F and delivers D mol/h of overhead product of concentration x_D and B mol/h of bottom product of concentration x_B . The flow of vapor with in the column is related as

$$\frac{D}{F} = \frac{x_F - x_B}{x_D - x_B}$$

(B)
$$\frac{D}{F} = \frac{x_D - x_B}{x_F - x_B}$$

(C)
$$\frac{D}{F} = \frac{x_D - x_F}{1 - x_B}$$

(D)
$$\frac{D}{F} = \frac{1 - x_B}{x_D - x_F}$$

- (E) Answer not known
- 152. The chief disadvantages of supercritical fluid extraction is the

- (B) Temperature required
- (C) Fluid concentration
- (D) Selection of solvent
- (E) Answer not known
- 153. The moisture contained by the substance which exerts an equilibrium vapor pressure less than that of pure liquid at the same temperature

- (B) Unbound moisture
- (C) Free moisture
- (D) Equilibrium moisture
- (E) Answer not known

154.	Frac	tional solvent extraction	_
	(A)	Employs only one solvent	(P) Employs double-solvent
	(C)	Results in low recovery	(D) Employs no solvent
	(E)	Answer not known	
155.	Floo	ding in a packed bed absorption	column results due to
	JA)	High pressure drop	(B) Low pressure drop
	(C)	Low velocity of liquid	(D) High temperature
	(E)	Answer not known	
156.	Schr	nidt number is the ratio of	
	(A)	Momentum diffusivity	
		Thermal diffusivity	
	(B)	(Momentum diffusivity/mass	diffusivity)
	(C)	(Thermal diffusivity/mass diff	usivity)
	(D)	Mass diffusivity	
		Momentum diffusivity	
	(E)	Answer not known	
157.		mass transfer to an Isolated coach zero, the Sherwood numb	sphere as the Reynolds number er approach a lower limit of
	(A)	0	(B) 0.61
	(C)	1	(D) 2
	(E)	Answer not known	

158. Milk is pasteurized if it is heated to 336 k for 30 min. But if it is heated to 347 k it only needs 15 sec for the same result. Find the activation energy?

Activation energy and rate constant $(K_1 \text{ and } K_2)$ of chemical reaction at two different temperatures $(T_1 \text{ and } T_2)$ are related by

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

(B)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R} \left(\frac{1}{T_2} + \frac{1}{T_1}\right)$$

(C)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E}{R}\left(\frac{1}{T_1} + \frac{1}{T_2}\right)$$

(D)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R}\left(\frac{1}{T_1}, \frac{1}{T_2}\right)$$

- (E) Answer not known
- 159. The rate of reaction $A \to B$ doubles as the concentration of A, C_A is doubled. If the rate of reaction is proportional to C_A^n , then what is the value of n for this reaction?
 - (A) 0.5

(B) 2

(9)

- (D) 0
- (E) Answer not known
- 160. The flux J, relative to

Characteristic nature of the constituent

- (B) Application to design of equipments
- (C) Diffusivity of the constituent
- (D) Distance travelled by the constituent
- (E) Answer not known

161. Choose the correct answer The purpose of feed forward control is to

- (A) Eliminate the need for feed back control in a process
- Reduce the effect of load variation on the process variable
- (C) Save energy
- (D) Compensate for dead time and lag time in a process
- (E) Answer not known

162. Typical control system design specifications for the gain and phase margins are

(A) $< 1.7 \text{ and} > 30^{\circ}$

(B) > 1.7 and $< 30^{\circ}$

 $< 0 > 1.7 \text{ and } > 30^{\circ}$

- (D) $< 1.7 \text{ and } < 30^{\circ}$
- (E) Answer not known

163. The transfer function of the given proportional-Derivative controller is $G(s)=K_c (1+0.2)$ Find its corner frequency (W_c)

 $(A) W_c = 4$

(B) $W_c = 1$

 $W_c = 5$

- (D) $W_c = 1.5$
- (E) Answer not known

164. The transfer function of a PID controller is

- (A) $K_c \left(1 + \tau_I S + \tau_D S\right)$
- $\int K_c \left(1 + \frac{1}{\tau_I S} + \tau_D S \right)$
- (C) $K_c \left(1 + \tau_I S + \frac{1}{\tau_D S}\right)$
- (D) $K_c \left(1 + \frac{1}{\tau_I S}\right)$
- (E) Answer not known

- 165. For given characteristic equation $s^4 + 2s^2 + 5s^2 + 4s + 2 = 0$. The system is
 - (4) Stable
 - (B) Unstable
 - (C) Initially stable then unstable
 - (D) Initially unstable then stable
 - (E) Answer not known
- 166. The system with a transfer function of $\frac{4}{s^2+2s+4}$ is
 - (A) Over damped system
- (B) Critically system
- Under damped system
- (D) Undamped system
- (E) Answer not known
- 167. The time required to achieve the fractional response of 0.5 of a first order system to a step change in input is
 - (A) $\tau \ln 10$

(B) $\tau \ln 5$

(C) $\tau \ln 4$

- $\tau \ln 2$
- (E) Answer not known
- 168. The open loop transfer function of a control system is $K_R/(1+\tau s)$, this represents
 - (A) A first order system
 - (B) Dead time system
 - (C) A first order time lag
 - (D) A second order system
 - (E) Answer not known

169.			s the ure of	most a red h				strument	for	measuring	the	
	(A)	Bim	ettalio	thern	omete	er						
	(B)	Opt	ical py	romete	er							
	(C)	The	rmoco	uple								
	(D)) Platinum resistance thermometer										
	(E) Answer not known											
170.	Mat	tch th	e proc	ess var	iables	with	the	e list of dev	vices	given below	•	
		Proce	ess var	iables				Measurir	ng de	vices		
	(p)	Tem	peratu	re			1.	Bourd on	tube	element		
	(q)	Press	sure				2.	Orifice plates				
	(r)	Flow					3.	Infrared analyzer				
	(s)	Liqu	id leve	l			4.	Displacer devices				
	(t)	Com	positio	n			5.	Pyrometer				
	,	(p)	(q)	(r)	(s)	(t)						
	(A)	5	1			3						
	(B)	3	1	4		5						
	(C)	1	3	4	2	5						
	(D)	3	1	2	4	5						
	(E)	Ans	wer no	t know	'n							
171.			_	uration uremen					cture	e, used to con	nect	
	(N)	Ma	nipula	ted var	iable		((B) Distur	banc	e		
	(C)	Mea	asured	outpu	t		4	(D) Unme	asure	ed output		
	(E)	Ans	wer n	ot knov	vn							

172.	Find	the eigen values of $2A^2$ if $A =$	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ without finding A^2 ?
	(A)	5, 1	(B	25, 1
	(C)	50, 2) 100, 2
	(E)	Answer not known		
173.	Find	the classification of $F_x - f_{yy} = 0$?	
	(A)	Elliptic	(B	Parabolic
	(C)	Hyperbolic	(D) Linear
	(E)	Answer not known		
174.	Gaus	ss seidal method is also termed	as	method
	(A)	Iterations	(B)) False positions
ļ	(C)	Successive displacement		
	(E)	Answer not known		
175.	Ther	mistor is a		
	(A)	Semi conductor whose resistate temperature	anc	e decreases with increase in
	(B)	Metal whose resistance increa	ses	linearly with temperature
	(C)	Metal whose resistance does n	ot	vary with temperature
	(D)	Device for measuring nuclear	rad	liation
	(E)	Answer not known		

- 176. ———— is a plot of overall variation of heat supply and demand across the entire process, which are zero at the pinch
 - (A) Grid diagram

- (B) Hot composite curve
- (C) Cold composite curve
- (D) Grand composite curve
- (E) Answer not known
- 177. The order of convergence of Newton's Raphson method
 - (1)

(B) 3

(C) 4

- (D) 5
- (E) Answer not known
- 178. The mathematical model equation, for a liquid level in a conical vessel is given by $\frac{dx}{dt} = -Kx^{-1.5} + \alpha u x^{-2}; \alpha = \frac{3.14 R^2}{H}$
 - K=0.117 (value coefficient) assume α =0.785 R and H are the known dimensions of conical tank
 - (A) A 1% increase in u causes 2% change in x
 - (B) A 1% increase in u causes 1% changes in x
 - (C) A 2% increase in u causes 3% changes in x
 - (D) A 2% increase in u causes 1% changes in x
 - (E) Answer not known

179.	In the degree of freedom analysis $N_F = N_V - N_E$ is said to be zero in mathematical model it means that the problem is ———————————————————————————————————				
		Under determined Exactly determined Answer not known	` '	Over determined Negatively determined	
180.	In ca	se of convex optimization progr	ramı	ming problem, there will be	
	(A)	No maxima	(B)	Saddle point	
		No minima		Delta point	
	(E)	Answer not known		_	
181.	Man	agement of hazardous waste is ram.	s list	ed under ——— of LDR	
	(A)	458 and 578	(B)	260 and 278	
		262 and 268	• •	272 and 278	
	(E)	Answer not known			
182.	Flota	ation technique is used in paper	r ind	lustry to recover	
_	مميين	Fine fibres			
·	(B)	Enzymes			
	(C)	Paper pulp			
	(D)	Solid impurities			
	(E)	Answer not known			
	` /				

183.	Maxi	imum allowable noise exposure limits for a man working for
	8 ho	urs a day in a noisy chemical plant is about
	(A)	20 Decibels
	(B)	60 Decibels
	(0)	90 Decibels
	(D)	120 Decibels
	(E)	Answer not known
184.	184. Select the correct option that contains the occupational disc that are listed in Factories Act, 1948	
	VAS	Anthrax and Silicosis
	(B)	Diarrhea and Lead poisoning
	(C)	Cholera and Byssinosis
	(D)	Diarrhea and Pneumoconiosis
	(E)	Answer not known
185.		particles of ———————————————————————————————————
	(A)	Alum
	(B)	Argon
	(C)	Neon
	(D)	Graphene

(E) Answer not known

186.		is a form of safe system of work operated where may be a high degree of foreseeable risk.
	(A)	HAZOP
	(B)	Fault Tree Analysis
	(C)	Safety Culture
į	(D)	Permit - to work system
	(E)	Answer not known

- 187. Which safety signs are indicated by a green square or rectangle with symbols and lettering in white?
 - Prohibition signs (A)
 - (B) Warning signs

(E)

- (C) Mandatory signs
- Safe condition signs
 - Answer not known (E)
- 188. Extinguishing of fire through the process of isolating the fix from the supply of oxygen by blanketing it water foam, sand etc is known as
 - (A) Smothering
 - Cooling (B)
 - (C) Interruption of chain reaction
 - (D) Starring
 - Answer not known (E)

- 189. A petroleum storage tank containing 500 litres of petrol catches fire. Identify the type of fire that takes place in the above mentioned scenario.
 - (A) Class A fire
 - Class B fire
 - (C) Class D fire
 - (D) Class C fire
 - (E) Answer not known
- 190. The number of disabling injuries per million man hours of operation is called as
 - (A) Threshold value
 - (P) Frequency rate
 - (C) Ceiling level
 - (D) Time-Weight average
 - (E) Answer not known
- 191. Name the fire detector that can be used to detect the fire at the incipient stage itself.
 - (A) Infrared flame detector
 - (B) Ultraviolet flame detector
 - (9) Ionization detector
 - (D) Optical smoke detector
 - (E) Answer not known

192.	The	HAZOP stand for
	مريعيا	Hazard and operability studies
	(B)	Hygiene and offshore studies
	(C)	Health and operation studies
	(D)	Hazardous and offshore studies
	(E)	Answer not known
193.	Find wate	out the treatment system to remove phosphorus from waster.
	(A)	Ozonation
	(B)	Ion exchange
ı	ser.	Metal salt addition
	(D)	Electro dialysis
	(E)	Answer not known
194.	Wink	tler method is used to find
	سهک	DO
	(B)	BOD
	(C)	COD
	(D)	TOC
	(E)	Answer not known
195.	Gene	eral term used for particles suspended in air is
•	مريش	Aerosol
	(B)	Plume
	(C)	Smog

(D)

(E)

Fume

Answer not known

196.		ose the correct option which indicates point sources of water ution:
	(1)	Acid Rain
	(2)	Agricultural run-off
	(3)	Municipal discharge pipes
	(4)	Industrial discharge pipes
	(A)	1 and 2
	(B)	2 and 3
	(0)	3 and 4
	(D)	1 and 4
	(E)	Answer not known
197.	In a by - (A) (B) (C) (D) (E)	waste water both inorganic and organic matters are measured test. Biological Oxygen Demand (BOD) Chemical Oxygen Demand (COD) Turbidity meter Colorimeter Answer not known
198.	Air	pollution from automobiles can be controlled by fitting
	(M)	Catalytic converter
	(B)	Cyclone separator
	(C)	Fabric filter
	(D)	-
	(E)	Answer not known

- 199. The chemical responsible for bhopal gas tragedy is
 - (A) Ammonia
 - Methyl Isocyanate
 - (C) Chlorine
 - (D) Sulphur di oxide
 - (E) Answer not known
- 200. An example of Non-Persistent pollutant is
 - Domestic sewage
 - (B) Pesticides
 - (C) Plastics
 - (D) Nuclear waste
 - (E) Answer not known