TAMILNADU PUBLIC SERVICE COMMISSION ELECTRICAL ENGINEERING / ELECTRICAL AND ELECTRONICS ENGINEERING

(DEGREE STANDARD) CODE: 400

UNIT - I ELECTRICAL CIRCUITS

Circuit elements – Kirchoff's Laws – Mesh and Nodal Analysis - Network Theorems and Applications for DC and AC circuits: Thevenin's Theorem, Norton's Theorem, Superposition Theorem, Maximum Power Transfer Theorem – Sinusoidal Steady State Analysis of RL-RC-RLC Circuits- Resonant Circuits - Natural and Forced Response – Transient Response of RL-RC-RLC Circuits-Two-port networks – Three Phase Circuits-Star-delta transformation-real and reactive power-powerfactor

UNIT - II ELECTRIC AND MAGNETIC FIELDS

Coulomb's Law-Electric Field Intensity-Electric Flux Density-Gauss's Law-Divergence - Electric Field and Potential due to Point, Line, Plane and Spherical Charge Distributions - Effect of Dielectric Medium - Capacitance of Simple Configurations- Magnetic Circuits- Magnetomotive force - Reluctance-Faraday's laws-Lenz's law-Biot-Savart's law - Ampere's law - Fleming's Left and Right Hand Rule-Lorentz force - Inductance - Self and Mutual Inductance-Dot Convention-Coupled Circuits

UNIT - III MEASUREMENTS AND INSTRUMENTATION

Units and Standards – Static and Dynamic Characteristics-Types of Errors-Error Analysis – Measurement of Current, Voltage, Power, Power-factor and Energy – Indicating instruments – Measurement of Resistance, Inductance, Capacitance and Frequency – Bridge Measurements – Instrument Transformers-Electronic Measuring Instruments – Multi meters-True RMS meter-Spectrum Analyzer-Power Quality Analyser- Recording Instruments-X-Y Recorder-Magnetic Recorders-Digital Data Recorder-Oscilloscopes-DSO-LED and LCD Display-Transducers and their applications to the Measurement of Non-Electrical Quantities like Temperature, Pressure, Flow-rate, Displacement, Acceleration, Noise level – Data Acquisition Systems – A/D and D/A Converters- Data Transmission Systems-PLC –smart meters

UNIT - IV CONTROL SYSTEMS

Mathematical Modelling of Physical Systems – Transfer Function - Block Diagrams and Signal Flow Graphs and their Reduction using Mason's Rule – Time Domain and Frequency Domain Analysis of Linear Time Invariant (LTI) System – Errors for Different Type of Inputs and Stability Criteria for Feedback Systems – Stability Analysis Using Routh-Hurwitz Array – Nyquist Plot and Bode Plot – Root Locus – Gain and Phase Margin – Basic Concepts of Compensator Design – PI,PD and PID Controllers-State Variable formulation-state transition matrix- Eigen values and Eigen vectors-free and forced responses of Time Invariant systems-controllability and observability.

UNIT -V ELECTRICAL MACHINES

D.C. Machines - Construction, Excitation methods - Armature Reaction and Commutation - Characteristics and Performance Analysis - Generators and Motors - Starting , Speed Control and braking - Testing - Losses and Efficiency. Transformers-Types-Construction and Operation- Testing -Equivalent Circuits - Losses and Efficiency-All day efficiency - Regulation -Parallel Operation – Three Phase Transformers – Auto-transformer. Induction Machines - Construction, Principle of operation - Rotating Magnetic Field -Performance, Torque-Speed Characteristics, No-load and Blocked Rotor tests, Equivalent Circuit, - Starting , Speed Control and braking - Single-Phase Induction Motors - Linear Induction Motors - Hysteresis Motors -Synchronous Machines - Construction - Operating Reluctance Motors. characteristics and Performance analysis – Efficiency and Voltage regulation - Parallel operation - V and inverted V curves of synchronous motors factor improvement-permanent magnet synchronous Permanent magnet brushless dc motor – stepper motor

UNIT -VI POWER SYSTEMS

Single Line Diagram of Power System-Per Unit Quantities-Power Generation Types- Hydro, Thermal and Nuclear Stations – Pumped storage plants – Co generation– Economic and operating factors – Modelling and performance characteristics of Power transmission lines and Cables-HVDC transmission– Mechanical Design of Transmission Lines-Sag-Insulators – Z_{Bus} and Y_{Bus} formulation – Load flow studies – Shunt and Series Compensation-Symmetrical and Un symmetrical Faults Analysis – Transient and Steady-

State Stability of Power Systems – Equal Area Criterion-Voltage and Frequency Control – Power System Transients – Power System Protection – Circuit Breakers – Relays classification of protection schemes-overcurrent, distance, differential and carrier-Equipment protection-transformer, generator, motor, busbars and transmission line –AC and DC Distribution-deregulation-energy conservation and energy auditing

UNIT -VII ANALOG AND DIGITAL ELECTRONICS

Semiconductor Devices – PN junctions – Transistors – FET – Zener, Photo diodes and their applications – Rectifier circuits – Voltage regulators – Multipliers. Biasing circuits – Small signal amplifiers – Frequency response – Multistage amplifiers – Coupling methods – Large signal amplifiers – Pushpull amplifiers – Feedback amplifiers – Oscillators – Operational amplifiers and its applications – Precision rectifiers – Multivibrators - Voltage Controlled Oscillator-Timer. Digital logic gate families (DTL,TTL,ECL,MOS,CMOS) – Logic gates - Simplification of Logic Functions- Design of Combinational circuits - Sequential logic circuits-latch–Flipflops– Counters – Registers – multiplexers and demultiplexers- Schmitt triggers-Memories (ROM,PLA and FPGA).

UNIT - VIII POWER ELECTRONICS AND DRIVES

Principle of Operation and Static and dynamic behaviour of Power Semiconductor devices -- Power Diode, DIAC, SCR, TRIAC, GTO, MOSFET and IGBT- - Single and Three Phase AC to DC Converters -uncontrolled and controlled rectifiers -performance parameters - Single and Three Phase AC to AC converters - Switched Mode Power Supplies - buck ,boost and buck-boost converter topologies -switching losses-Inverters-Single and Three Phase Inverters - Voltage control- Pulse Width Modulation techniques-harmonic elimination techniques- Uninterrupted Power Supplies- Electrical drives-motor load dynamics-load torque characteristics-Speed Control of DC Drives- Converter/Chopper fed dc motor drives- Speed control of AC drives-induction motor drives -stator voltage control and V/f control -synchronous motor drives-V/f control, self control, margin angle control and power factor control

UNIT -IX DIGITAL PROCESSORS AND COMMUNICATION

Architecture of 8085, 8086 and 8051 – Instruction Sets – Assembly Language Programming – Interfacing for memory and I/O: 8255 Programmable Peripheral Interface – 8253 Programmable Timer Interface – 8279 Programmable Keyboard and Display Interface – 8257 Direct Memory Access Interface - Embedded processors (ARM and PIC basics only). Classification of Signals and systems – Properties of Discrete Fourier Transforms - FFT Computation – FIR Filters – IIR Filters: Butterworth Filters – Chebyshev Filters.

Digital Communication Systems: Pulse Code Modulation and Demodulation – Adaptive Delta Modulation - Frequency Division and Time Division Multiplexing – Data Communication Network Topologies - 7-layer OSI Protocol-IoT concepts

UNIT -X RENEWABLE ENERGY SOURCES AND STORAGE DEVICES

Renewable Energy – Sources and Features - Solar Radiation Spectrum-Radiation Measurement-Solar Photovoltaic Cell –principle of operation-types-MPPT - Microhydel- Operating principle- Wind Energy –components- wind power turbine types-MPPT- Site Selection-Types of Wind Generators-smart grid - Electric vehicles -V2G and G2V- Fuel Cells- Batteries-types and characteristics- Super Capacitors.

Note: Medium of Instruction is English only.